Skip to main content

Geochemical Features and Accumulation Conditions of Mn-Bearing Sediments in the Complex (Fe–Mn and BaSO4–Pb) Ushkatyn-III Deposit, Central Kazakhstan

Abstract

The Ushkatyn-III deposit is located in Central Kazakhstan, 300 km west of Karaganda. It is ascribed to the weakly metamorphosed Atasu-type hydrothermal–sedimentary ore deposits. The Upper Devonian (D3fm2) carbonate sequence of this deposit comprises stratiform barite–lead, iron, and manganese orebodies. The study was focused on the iron– and manganese–bearing deposits. New data were obtained on the content of major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P), trace (Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Cs, Ba, Hf, W, Tl, Pb, Th, and U), and rare-earth elements (REE) in all rocks of the ore-bearing unit. It is shown that all rocks, including host limestones, are enriched in Mn, As, Zn, Ba, and Pb, while normalization to aluminum revealed excessive Li, Be, Sr, Y, Mo, Cd, Sb, W, and Tl contents relative to the terrigenous part of sediment. REE variations point to a change of redox settings for accumulation of initial metalliferous sediments. Geological and geochemical data show that the genesis of the barite–lead, iron and manganese ores is related to the evolution of a single hydrothermal system. The ores were formed near or on the seafloor surface: the barite–lead ores are confined to venting sites on reefal buildups, while iron and manganese ores are formed from matter dispersed in the water column at some distance from hydrothermal vents.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. 1

    Atlas of Mineral Deposit Models of the Republic of Kazakhstan, Ed. by S. Zh. Daukeev, B. S. Uzhkenov, Kh. A. Bespaev, L. A. Miroshnichenko, A. K. Mazurov, and M. A. Sayduakasov (Center for geoinformation of the MF RK, Almaty, 2004]. M. Bau and P. Dulski, “Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron–formations, Transvaal supergroup, South Africa,” Precambrian Res. 79, 37–55 (1996).

    Article  Google Scholar 

  2. 2

    M. Bau, K. Scmidt, A. Koschinsky, J. Hein, T. Kuhn, and A. Usui, “Discriminating between different genetic types of marine ferro-manganese crusts and nodules on rare earth elements and yttrium,” Chem. Geol. 381, 1–9 (2014).

    Article  Google Scholar 

  3. 3

    Biology of Hydrothermal Systems, Ed. by A. V. Gebruk (Inst. Okeanol. RAN, Moscow, 2002) [in Russian].

    Google Scholar 

  4. 4

    J. Brugger and R. Giere “Origin and distribution of some trace elements in metamorhhosed Fe–Mn deposits, Val Ferrera, Eastern Swiss Alps,” Can. Mineral. 38, 1075–1101 (2000).

    Article  Google Scholar 

  5. 5

    H.-J. Brumsack, “The trace metal content of recent organic carbon–rich sediments: implications for Creataceous black shale formation,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 344–361 (2006).

    Article  Google Scholar 

  6. 6

    A. I. Brusnitsyn, “Associations of Mn–Bearing minerals as indicators of oxygen fugacity during the metamorphism of metalliferous deposits,” Geochem. Int. 45 (4), 345–363 (2007).

    Article  Google Scholar 

  7. 7

    A. I. Brusnitsyn, “Geochemistry and genetic model of the ore–bearing sediments of the Parnok ferromanganese deposit, Polar Urals,” Geochem. Int. 51(8), 623–645 (2013).

    Article  Google Scholar 

  8. 8

    A. I. Brusnitsyn, Parnok Manganese Deposit, Polar Urals: Mineralogy, Geochemistry, and Ore Genesis (St. Peterb. Gos. Univ., St. Petersburg, 2015) [in Russian].

    Google Scholar 

  9. 9

    A. I. Brusnitsyn and S. V. Strekopytov, “Mineralogy and geochemistry of ore–bearing deposits of the Durnovskoe deposit,” Metallogeny of Ancient and Modern Oceans–2010. Ore Potential of Rift and Island-Arc Structures, (IMin URO RAN, Miass, 2010), pp. 90–97 [in Russian].

  10. 10

    A. I. Brusnitsyn, E. N. Perova, O. S. Vereshchagin, S. N. Britvin, N. V. Platonova, and V. V. Shilovskikh, “Genetic mineralogy of manganese ores of the Ushkatyn-III deposit, Central Kazakhstan,” Metallogeny of Ancient and Modern Oceans-2018. Volcanism and Ore Formation, Ed. by V. V. Maslennikov and I. Yu. Melekestseva, (IMin URO RAN, Miass, 2018), pp. 67–70 [in Russian].

  11. 11

    A. I. Brusnitsyn, V. N. Kuleshov, S. A. Sadykov, E. N. Perova and O. S. Vereshchagin, “Isotopic composition (δ13C and δ18O) and genesis of Mn-bearing sediments in the Ushkatyn-III deposit, Central Kazakhstan,” Lithol. Miner. Resour. 55 (6), 445–467 (2020).

    Article  Google Scholar 

  12. 12

    G. Yu. Butuzova, Hydrothermal–Sedimentary Ore Formation in the Red Sea Rift Zone (Geos, Moscow, 1998) [in Russian].

    Google Scholar 

  13. 13

    E. I. Buzmakov, and V. I. Shibrik, “Stratigraphy and lithology of the Famennian and Tournesian deposits of the Atasu ore district,” Sov. Geologiya, No. 2, 61–79 (1976).

    Google Scholar 

  14. 14

    E. I. Buzmakov, V. I. Shchibrik, A. A. Rozhnov, V. Ya. Sereda, and N. M. Radchenko, “Stratiform ferromanganese and base–metal deposits of the Ushkatyn ore field, Central Kazakhstan,” Geol. Rudn. Mestorozhd., No. 1, 32–46 (1975).

  15. 15

    S. E. Calvert and T. F. Pedersen “Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shale,” Econ. Geol. 91, 36–47 (1996).

    Article  Google Scholar 

  16. 16

    B. C. Chisonga, J. Gutzmer, N. J. Beukes, and J. M. Huizenga, “Nature and origin of the protolith succession to the paleoproterozoic Serra do Navio manganes deposit, Amapa province, Brazil,” Ore Geol. Rev. 47, 59–76 (2012).

    Article  Google Scholar 

  17. 17

    A. V. Dubinin, Rare-Earth Element Geochemistry in Ocean (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  18. 18

    Ecosystems of the Atlantic Hydrothermal Vents, Ed. by M. E. Vinogradov and A. L. Vereshchalka (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  19. 19

    E. R. Force and W. F. Cannon, “Depositional model for shallow–marine manganese deposits around black shale basins,” Econ. Geol. 83, 93–117 (1988).

    Article  Google Scholar 

  20. 20

    L. Frakes and B. Bolton, “Effects of oceanic chemistry, sea level, and climate on the formation of primary sedimentary manganese ore deposits,” Econ. Geol. 87, 1207–1217 (1992).

    Article  Google Scholar 

  21. 21

    C. Frondel and J. Baum, “Structure and mineralogy of the Franklin zinc–iron–manganese deposit, New Jersey,” Econ. Geol. 69, 157–180 (1974).

    Article  Google Scholar 

  22. 22

    S. V. Galkin, Hydrothermal Communities of the World Ocean (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  23. 23

    C. R. German, B. P. Holliday, and H. Elderfield, “Redox cycling of rare earth elements in suboxin zone of the Black Sea,” Geochim. Cosmochim. Acta 55, 3553–3558 (1991).

    Article  Google Scholar 

  24. 24

    G. P. Glasby, C. T. Paravassiliou, J. Mitsis, E. Valsami–Jones, A. Liakopoulos, and R. M. Renner, “The Vani manganese deposit, Milos Island. Greece: fossil stratabound Mn–Ba–Pb–Zn–As–Sb–W–rich hydrothermal deposit, in The South Aegean Active Volcanic Arc, Ed. by M. Fytikas, and G. Vougioukalakis, (Elsevier, Amsterdam, 2005), pp. 255–291.

    Google Scholar 

  25. 25

    E. G. Gurvich, Metalliferous of the World Ocean (Nauchnyi Mir, Moscow, 1998) [in Russian].

    Google Scholar 

  26. 26

    J. Gutzmer and N. J. Beukes, “The manganese formatiom of the Neoproterozoic Penganga Group, India – revision of an enigma,” Econ.Geol. 93, 1091–1102 (1998).

    Article  Google Scholar 

  27. 27

    D. Holtstam and J. Mansfeld “Origin of a carbonate–hosted Fe–Mn–(Ba–As–Pb–Sb–W) deposit of Langban–type in central Sweden,” Miner. Deposita 36, 641–657 (2001).

    Article  Google Scholar 

  28. 28

    J. S. Huebner, Stability Relation of Minerals in the System Mn–Si–C–O, Ph. D. Thesis (The Johns Hopkins University, Baltimore, 1967).

  29. 29

    V. V. Kalinin, “Metamorphism in manganese and ferromanganese ores of the deposits of the Ushkatyn group, Central Kazakhstan,” Geology and Geochemistry of Manganese, Ed. by I. M. Varentsov (Nauka, Moscow, 1982), pp. 122–127 [in Russian].

    Google Scholar 

  30. 30

    V. V. Kalinin, “Complex ferromanganese and zinc–lead–barite ores of the deposits of the Ushkatyn group, Central Kazakhstan,” Volcanogenic–Sedimentary and Hydrothermal Manganese Deposits, Ed. by I. V. Vitovskaya (Nauka, Moscow, 1985), pp. 5–64 [in Russian].

    Google Scholar 

  31. 31

    V. V. Kalinin, A. A. Rozhnov, E. I. Buzmakov, V. Ya. Sereda, and V. I. Shchibrik, “Composition of ores and genetic features of the deposits of the Ushkatyn ore field,” Manganese Ore Formation at the USSR Territory, Ed. by D. G. Sapozhnikov (Nauka, Moscow, 1984), pp. 131–137 [in Russian].

    Google Scholar 

  32. 32

    Y. Kato, K. Fujinaga, T. Nozaki, H. Osawa, K. Nakamura, and R. Ono, “Rare earth, major and trace elements in the Kunimiyama ferromanganese deposit in the Northen Chichibu Belt, Central Shikoku, Japan,” Res. Geol. 55, 291–299 (2005).

    Article  Google Scholar 

  33. 33

    M. M. Kayupova, Mineralogy of Iron and Manganese Ores of Western Atasu, Central Kazakhstan (Alma–Ata, Nauka, 1974) [in Russian].

  34. 34

    V. N. Kholodov, Geochemistry of Sedimentary Process (Transactions of the Geological Institute, v. 574. Ed. Yu.G. Leonov. GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  35. 35

    Ya. M. Kislyakov and V. N. Shchetochkin, Hydrogenic Ore Formation (Geoinformmark, Moscow, 2000) [in Russian].

    Google Scholar 

  36. 36

    V. V. Korobkin and M. M. Buslov, “Geology and geodynamics of the western Central Asian Fold Belt (Kazakhstan Palezoides),” Russ. Geol. Geophys., No. 12, 1600–1618 (2011).

  37. 37

    Långban, the Mines, their Minerals, History and Explorers, Ed. by D. Holtstam and J. Langhof, (Raster Forlag, Stockholm, 1999).

    Google Scholar 

  38. 38

    Y.-H. Li and J. E. Schoonmaker, “Chemical composition and mineralogy of marine sediments,” Treatise on Geochemistry. Sediments, Diagenesis, and Sedimentary Rocks (Elsevier, Amsterdam, 2003), vol. 7, pp. 1–35.

    Google Scholar 

  39. 39

    A. Liakopoulos, G. P. Glasby, C. T. Papavassiliou, and J. Boulegue, “Nature and origin of the Vani manganese deposits, Milos, Greece: an overview,” Ore Geol. Rev. 18, 181–209 (2001).

    Article  Google Scholar 

  40. 40

    J. B. Maynard, “The chemistry of manganese ores through time: a signal of increasing diversity of earth–sufface environment,” Econ. Geol. 105, 535–552 (2010).

    Article  Google Scholar 

  41. 41

    J. B. Maynard, “Manganiferous sediments, rocks and ores,” Treatise on Geochemistry (Elsevier, Amsterdam. 2014), Vol. 9, 327–349.

    Google Scholar 

  42. 42

    N. M. Mitryaeva, Mineralogy of the Barite–Zinc–Lead Ores of the Deposits of the Atasu District, (Nauka, Alma–Ata, 1979) [in Russian].

  43. 43

    J. W. Moffet, “Microbially mediated cerium oxidation in sea water,” Nature 345 (6274), 421–423 (1990).

    Article  Google Scholar 

  44. 44

    F. M. M. Morel, A. J. Milligan, and M. A. Saito, “Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients,” Treatise on Geochemistry (Elsevier, Amsterdam, 2014), vol. 8, pp. 123–150.

    Google Scholar 

  45. 45

    M. Munteanu, S. Marincea, H. U. Kasper, K. Zak, V. Alexe, V.Trandafir, G. Saptefrati, and A. Mihalache, “Black chert–hosted manganese deposits from the Bistritei Mountains, Eastern Carpathians (Romania): petrography, genesis and metamorphic evolution,” Ore Geol. Rev. 24, 45–65 (2004).

    Article  Google Scholar 

  46. 46

    K. Nicholson, “Contrasting mineralogical–geochemical signatures of manganese oxides: guides to metallogenesis,” Econ. Geol. 87, 1253–1264 (1992).

    Article  Google Scholar 

  47. 47

    F. O. Ossa, A. Hofmann, M. Wille, J. E. Spangenberg, A. Bekker, S. W. Poulton, B. Eickmann, and R. Schoenberg, “Aerobic iron and manganese cycling in a redox–stratified Mesoarchean epicontinental sea,” Earth Planet. Sci. Lett. 500, 28–40 (2018).

    Article  Google Scholar 

  48. 48

    K. Papavassiliou, P. Voudouris, C. Kanellopoulos, G. Glasby, D. Alfieris, and I. Mitsis, “New geochemical and mineralogical contraints on the genesis of the Vani hydrothermal manganese deposits at NW Milos island, Greece: cpmparison with the Aspro Gialoudi deposits and implications for the formation on the Molos manganese mineralization,” Ore Geol. Rev. 80, 594–611 (2017).

    Article  Google Scholar 

  49. 49

    A. I. Perelman, Geochemistry (Vysshaya shkola, Moscow, 1989) [in Russian].

  50. 50

    N. Planavsky, A. Bekker, O. J. Rouxel, B. Kamber, A. Hofmann, A. Knudsen, and T. W. Lyons, “Rare earth elements and yttrium compositions of archean and paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanusms of deposition,” Geochim. Cosmochim. Acta 74, 6387–6405 (2010).

    Article  Google Scholar 

  51. 51

    G. Rantitsch, F. Melcher, Th. Meisel, and Th. Rainer, “Rare earth, major and trace elements in Juarassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hudrogenous origin of stratiform manganese deposits,” Mineral. Petrol. 77, 109–127 (2003).

  52. 52

    Reference Book on Stratiform Deposits, Ed. by L. F. Narkelyun and A. I. Trubachev (Nedra, Moscow, 1990) [in Russian]. 91 p.

  53. 53

    L. Robb, Introduction to Ore-Forming Processes (Blackwell Publishing, 2005).

    Google Scholar 

  54. 54

    S. Roy, Manganese Deposits (Academic Press, London, 1981).

    Google Scholar 

  55. 55

    A. A. Rozhnov, “Geological–genetic features of manganese mineralization of the western Dzhailma trough and the place of manganese mineralization in the iron and base metal occurrences of the district,” Manganese Deposits of the USSR, Ed. by D. G. Sapozhnikov, (Nauka, Moscow, 1967), pp. 311–324 [in Russian].

    Google Scholar 

  56. 56

    A. A. Rozhnov, Comparative characteristics of the manganese deposits of the Atasu and Nikopol–Chiatur types,” Manganese Geology and Geochemistry, Ed. by I. M. Varentsov (Nauka, Moscow, 1982), pp. 116–121 [in Russian].

    Google Scholar 

  57. 57

    A. A. Rozhnov, E. I. Buzmakov, N. K. Manukhin, and V. I. Shchibrik, “Zoning of iron and manganese ores of the Atasu deposits, Central Kazakhstan,” Geol. Rudn. Mestorozhd., No. 3, 23–32 (1976).

  58. 58

    G. N. Shcherba, “Atasu-type deposits,” Geol. Rudn. Mestorozhd., No. 5, 106–114 (1967).

  59. 59

    G. N. Shcherba, “Some features of study of the Atasu-type deposit,” Izv. Akad. Nauk KazSSR, Ser. Geol., No. 5, 15–33 (1964).

  60. 60

    E. R. Sholkovitz, W. M. Landing, and B. L. Lewis, “Ocean particle chemistry: the fractionation of rare earth elements betweem suspended particles and seawater,” Geochim. Cosmochim. 58, 1567–1579 (1994).

    Article  Google Scholar 

  61. 61

    N. S. Skripchenko, Prediction of Non–Ferrous Metal Deposits in Sedimentary Rocks (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  62. 62

    N. Tribovillaed, T. J. Algeo, T. Lyons, and A. Riboulleau, “Trace metals as paleoredox and paleoproductivity proxies: an update,” Chem. Geol. 232, 12–32 (2006).

    Article  Google Scholar 

  63. 63

    I. M. Varentsov, A. B. Veimarn, A. A. Rozhnov, V. I. Shibrik, and A. L. Soklova, “Geochemical model of the formation of manganese ores of the Famennian rift basin of Kazakhstan: major components, rare–earth and trace elements,” Lithol. Miner. Resour., No. 3, 56–79. (1993).

  64. 64

    A. B. Veimarn, “Famennian ferromanganese deposits of Central Kazakhstan,” Manganese Geology and Geochemistry, Ed. By I. M. Varentsov, (Nauka, Moscow, 1982), pp. 122–127(1982) [in Russian].

    Google Scholar 

  65. 65

    A. B. Veimarn and E. E. Milanovsky, “Famennian rifting: evidence from Kazakhstan and some other regions of Eurasia. Paper 1,” Byul. Mosk. O-va Ispyt. Prir., Otd. Geol., No. 4, 34–47 (1990).

  66. 66

    J. J. Wilkinson, “Sediment-hosted zinc–lead mineralization: processes and perspectives, “ Treatise on Geochemistry, 2nd ed. (Elsevier, Amsterdam, 2014), Vol. 13, pp. 219–250.

    Google Scholar 

  67. 67

    C. Wu, Z. Zhang, J. Xiao, Y. Fu, S. Shao, C. Zheng, J. Yao, and C. Xiao, “Nanhuan manganese deposits within restricted basins of the southeastern Yangtze platform, China: constraints from geological and geochemical evidence,” Ore Geol. Rev. 75, 76–99 (2016).

    Article  Google Scholar 

  68. 68

    J. Xiao, J. He, H. Yang, and C. Wu, “Comparison between Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precpcitates based on rare earth elements,” Ore Geol. Rev. 89, 290–308 (2017).

    Article  Google Scholar 

  69. 69

    Ya. E. Yudovich, and M. P. Ketris, Geochemical Indicators of Lithogenesis: Lithological Geochemistry (Geoprint, Syktyvkar, 2011) [in Russian].

    Google Scholar 

  70. 70

    Ya. E. Yudovich, and M. P. Ketris, Manganese Geochemistry (Geoprint, Syktyvkar, 2014) [in Russian].

    Google Scholar 

  71. 71

    Zhairem Mining and Processing Plant. Annual Report for 2015 (AO ZHGOK, 2015) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.Yu. Burkovskii, the Chairman of the JSC Zhairem Mining and Processing Plant (Zhairem Settlement, Kazakhstan) and geologists of this company (V.A. Volkov, O.A. Muratov, A.N. Abdel’manova, Zh.Zh. Akimeev, K.A. Akshalova, A.S. Burkhanov, R.B. Ivakova, and G.K. Turlynova) for help in field studies.

Funding

The studies were carried out using analytical facilities of the Resource Centers of the “X-Ray Diffraction Methods of Study”, “Microscopy and Microanalysis,” and “Geomodel” of the St. Petersburg State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Brusnitsyn.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brusnitsyn, A.I., Perova, E.N., Vereshchagin, O.S. et al. Geochemical Features and Accumulation Conditions of Mn-Bearing Sediments in the Complex (Fe–Mn and BaSO4–Pb) Ushkatyn-III Deposit, Central Kazakhstan. Geochem. Int. 59, 858–888 (2021). https://doi.org/10.1134/S0016702921070028

Download citation

Keywords:

  • manganese deposits
  • metalliferous sediments
  • geochemical indicators of ore genesis