Skip to main content
Log in

Role of Pyroxenite Mantle in the Formation of the Mesozoic Karoo Plume Melts: Evidence from the Western Queen Maud Land, East Antarctica

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Petrological and geochemical study of basalts and dolerites in East Antarctica, the formation of which is explained by the Karoo plume impact on the Queen Maud Land, revealed the presence of high-magnesium magmas, Fe-rich and depleted in incompatible elements, among the geochemically diverse magmas. Such high-Mg ferropicrites are scarce in other plume-related igneous provinces and their genesis is related to melting of a peculiar pyroxenite mantle source. These rocks were found only in the Ahlmannryggen and Vestfjella massifs in Antarctica and in the Letabo province in South Africa, correspond to the central part of the plume and likely the earliest eruptions. The studied dolerites are close to the parental melts. They have a relatively smoothed lithophile element pattern (from Th to Er), the lowered content of most compatible elements (Y, Yb, Lu), as well as the low 206Pb/204Pb = 17.33–17.37 and moderately radiogenic neodymium composition with 143Nd/144Nd from 0.51249 to 0.51259, which indicate a relatively old age of the pyroxenite component. All high-Ti basalts related to the Karoo–Maud plume point to the presence of this component in their compositions, but its proportion could significantly vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Int. J. Geosci. 2, 231–239 (2011).

    Article  Google Scholar 

  2. S. Callegaro, A. Marzoli, H. Bertrand, M. Chiaradia, L. Reisberg, C. Meyzen, G. Bellieni, R. E. Weems, and R. Merle, “Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America,” Earth Planet. Sci. Lett. 376, 186–199 (2013).

    Article  Google Scholar 

  3. V. E. Courtillot and P. R. Renne, “On the ages of flood basalt events,” Comptes Rendus Geosci. 335, 113–140 (2003).

    Article  Google Scholar 

  4. K. G. Cox, “The role of mantle plumes in the development of continental drainage patterns,” Nature 342, 873–877 (1989).

    Article  Google Scholar 

  5. M. L. Curtis, T. R. Riley, W. H. Owens, Ph. T. Leat, and R. A. Duncan “The form, distribution and anisotropy of magnetic susceptibility of Jurassic dykes,” in Dronning Maud Land, Antarctica. Implications for Dyke Swarm Emplacement, Ed. by H. U. Sverdrupfjella, J. Struct. Geol. 30, 1429–1447 (2008).

  6. I. W. D. Dalziel, L. A. Lawver, and J. B. Murphy, “Plumes, orogenesis, and supercontinental fragmentation,” Earth Planet. Sci. Lett. 178, 1–11 (2000).

    Article  Google Scholar 

  7. J. M. Day, D. G. Pearson, C. G. Macpherson, D. Lowry, and J. C. Carracedo, “Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen–osmium isotope evidence from Canary Island lavas,” Geology 37 (6), 555–558 (2009).

    Article  Google Scholar 

  8. R. A. Duncan, P. R. Hooper, J. Rehacek, J. S. Marsh, and A. R. Duncan, “The timing and duration of the Karoo igneous event, southern Gondwana,” J. Geophys. Res. B102, 18127–18138 (1997).

    Article  Google Scholar 

  9. L. J. Elkins, B. Bourdon, and S. Lambart, “Testing pyroxenite versus peridotite sources for marine basalts using U-series isotopes,” Lithos 332–333, 226–244 (2019).

    Article  Google Scholar 

  10. R. M. Ellam and K. G. Cox, “A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites,” Earth Planet. Sci. Lett. 92 (2), 207–218 (1989).

    Article  Google Scholar 

  11. D. H. Elliot and T. H. Fleming, “Weddell triple junction: The principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana,” Geology 28 (6), 539–542 (2000).

    Article  Google Scholar 

  12. J. Encarnación, T. H. Fleming, D. H. Elliot, and H. V. Eales, “Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana,” Geology 24, 535–538 (1996).

    Article  Google Scholar 

  13. F. Ferraccioli, P. C. Jones, M. L. Curtis, P. T. Leat, and T. R. Riley, “Tectonic and magmatic patterns in the Jutulstraumen rift (?) region, East Antarctica, as imaged by high-resolution aeromagnetic data,” Earth Planet. Space. 57, 767–780 (2005).

    Article  Google Scholar 

  14. H. Furnes, E. Neumann, and B. Sundvoll, “Petrology and geochemistry of Jurassic basalt dykes from Vestfjella, Dronning Maud Land, Antarctica,” Lithos 15, 295–304 (1982). https://doi.org/10.1016/0024-4937(82)90020-2

    Article  Google Scholar 

  15. H. Furnes, E. Vad, H. Austrheim, J. G. Mitchell, and L. B. Garmann, “Geochemistry of basalt lavas from Vestfjella and adjacent areas, Dronning Maud Land, Antarctica,” Lithos 20, 337–356 (1987). https://doi.org/10.1016/0024-4937(87)90015-6

    Article  Google Scholar 

  16. W. Gorczyk, D. R. Mole, and S. J. Barnes, “Plume–lithosphere interaction at craton margins throughout Earth history,” Tectonophysics 746, 678–694 (2018).

    Article  Google Scholar 

  17. G. E. Grikurov and G. Leychenkov, Tectonic Map of Antarctica (Scale 1:10 M). Commission for Geological Map of the World (CGMW) (Paris, 2012).

  18. P. B. Groenewald, A. B. Moyes, G. H. Grantham, and J. R. Krynauw, “East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land,” Precambrian Res. 75, 231–250 (1995). https://doi.org/10.1016/0301-9268(95)80008-6

    Article  Google Scholar 

  19. E. G. Grosch, A. Bisnath, H. E. Frimmel, and W. S. Board, “Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt,” J. Geol. Soc., London 164, 465–475 (2007).

    Article  Google Scholar 

  20. Ch. Harris, J. S. Marsh, A. R. Duncan, and A. J. Erlank, “The petrogenesis of the Kirwan basalts of Dronning Maud Land, Antarctica,” J. Petrol. 31, 341–369 (1990).

    Article  Google Scholar 

  21. W. W. Hastie, M. K. Watkeys, and C. Aubourg, “Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis,” Gondwana Res. 25, 736–755 (2014).

    Article  Google Scholar 

  22. C. J. Hawkesworth, J. S. Marsh, A. R. Duncan, A. J. Erlank, and M. J. Norry, “The role of continental lithosphere in the generation of the Karoo volcanic rocks: evidence from combined Nd– and Sr–isotope studies in petrogenesis of the volcanic rocks of the Karoo Province,” Geol. Soc. S. Africa Spec. Publ. 13, 341–354 (1984).

    Google Scholar 

  23. J. S. Heinonen and A. V. Luttinen, “Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources,” Lithos 105, 347–364 (2008). https://doi.org/10.1016/j.lithos.2008.05.010

    Article  Google Scholar 

  24. J. S. Heinonen and A. V. Luttinen, “Mineral chemical evidence for extremely magnesian subalkaline melts from the Antarctic extension of the Karoo large igneous province,” Mineral. Petrol. 99, 201–217 (2010). https://doi.org/10.1007/s00710-010-0115-9

    Article  Google Scholar 

  25. J. S. Heinonen, R. W. Carlson, and A. V. Luttinen, “Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province?,” Chem. Geol. 277, 227–244 (2010). https://doi.org/10.1016/j.chemgeo.2010.08.004

    Article  Google Scholar 

  26. J. S. Heinonen, A. V. Luttinen, T. R. Riley, and R. M. Michallik, “Mixed pyroxenite–peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province,” Lithos 177, 366–380 (2013).

    Article  Google Scholar 

  27. J. S. Heinonen, R. W. Carlson, T. R. Riley, A. V. Luttinen, and M. F. Horan, “Subduction-modified oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental flood basalt province,” Earth Planet. Sci. Lett. 394, 229–241 (2014). https://doi.org/10.1016/j.epsl.2014.03.012

    Article  Google Scholar 

  28. J. S. Heinonen, R. W. Carlson, A. V. Luttinen, and W. A. Bohrson, “Enriched continental flood basalts from depleted mantle melts: modeling lithospheric contamination of Karoo lavas from Antarctica,” Contrib. Mineral Petrol. 171 (1), 171–179 (2016). https://doi.org/10.1007/s00410-015-1214-8

    Article  Google Scholar 

  29. J. S. Heinonen, A. V. Luttinen, and M. J. Whitehouse, “Enrichment of 18O in the mantle sources of the Antarctic portion of the Karoo large igneous province,” Contrib. Mineral. Petrol. 173, 21–37 (2018). https://doi.org/10.1007/s00410-018-1447-4

    Article  Google Scholar 

  30. M. M. Hirschmann and E. M. Stolper, “A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB,” Contrib. Mineral Petrol. 124, 185–208 (1996).

    Article  Google Scholar 

  31. A. W. Hofmann and W. M. White, “Mantle plumes from ancient oceanic crust,” Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  Google Scholar 

  32. M. J. Hole, “Mineralogical and geochemical evidence for polybaric fractional crystallization of continental flood basalts and implications for identification of peridotite and pyroxenite source lithologies,” Earth–Sci. Rev. 176, 51–67 (2018).

    Article  Google Scholar 

  33. M. Honda, I. McDougall, and D. Patterson, “Solar noble gases in the Earth: The systematics of helium–neon isotopes in mantle derived samples,” Lithos 30, 257–265 (1993).

    Article  Google Scholar 

  34. G. H. Howarth and Ch. Harris, “Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry,” Earth Planet. Sci. Lett. 475, 143–151 (2017). https://doi.org/10.1016/j.epsl.2017.07.043

    Article  Google Scholar 

  35. J. Jacobs, R. J. Thomas, and K. Weber, “Accretion and indentation tectonics at the southern edge of the Kaapvaal Craton during the Kibaran (Grenville) Orogeny,” Geology 21 (3), 203–206 (1993).

    Article  Google Scholar 

  36. J. Jacobs, E. Mikhalsky, F. Henjes–Kunst, A. Lufer, R. J. Thomas, M. A. Elburg, C.–C. Wang, S. Estrada, and G. Skublov, “Neoproterozoic geodynamic evolution of easternmost Kalahari: constraints from U–Pb–Hf–O zircon, Sm-Nd isotope and geochemical data from the Schirmacher Oasis, East Antarctica,” Precambrian Res. 342, 105553 (2020).

    Article  Google Scholar 

  37. F. Jourdan, G. Feraud, H. Bertrand, A. B. Kampunzu, G. Tshoso, B. Le Gall, J. J. Tiercelin, and P. Capiez, “The Karoo triple junction questioned: Evidence from 40Ar/39Ar Jurassic and Proterozoic ages and geochemistry of the Okavango dike swarm (Botswana),” Earth Planet. Sci. Lett. 222, 989–1006 (2004).

    Article  Google Scholar 

  38. F. Jourdan, H. Bertrand, U. Scharer, J. Blichert-Toft, G. Feraud, and A. B. Kampuzu, “Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana–Zimbabwe: lithosphere vs mantle plume contribution,” J. Petrol. 48 (6), 1043–1077 (2007). https://doi.org/10.1093/petrology/egm010

    Article  Google Scholar 

  39. F. Jourdan, G. Feraud, H. Bertrand, and M. K. Watkeys, “From flood basalts to the inception of oceanization: example from the 40Ar/39Ar high–resolution picture of the Karoo large igneous province,” Geochem., Geophys., Geosyst. 8 (2007). https://doi.org/10.1029/2006GC001392

  40. V. S. Kamenetsky, R. Maas, M. B. Kamenetsky, G. M. Yaxley, K. Ehrig, G. F. Zellmer, I. N. Bindeman, A. V. Sobolev, D. V. Kuzmin, A. V. Ivanov, J. Woodhead, and J. Schilling, “Multiple mantle sources of continental magmatism: insights from “high–Ti” picrites of Karoo and other large igneous provinces,” Chem. Geol. 455, 22–31 (2017). https://doi.org/10.1016/j.chemgeo.2016.08.034

    Article  Google Scholar 

  41. J. Korenaga, “Mantle mixing and continental breakup magmatism,” Earth Planet. Sci. Lett. 218, 463–473 (2004).

    Article  Google Scholar 

  42. S. Lambart, D. Laporte, A. Provost, and P. Schiano, “Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamic and experimental constraints,” J. Petrol. 53, 451–476 (2012).

    Article  Google Scholar 

  43. S. Lambart, D. Laporte, and P. Schiano, “Markers of the pyroxenite contribution in the major–element compositions of oceanic basalts: Review of the experimental constraints,” Lithos 160–161, 14–36 (2013).

    Article  Google Scholar 

  44. S. Lambart, M. B. Baker, and E. M. Stopler, “The role of pyroxenite in basalt genesis: melt–PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa,” J. Geophys. Res. (2016). https://doi.org/10.1002/2015JB012762

  45. L. A. Lawver, L. M. Gahagan, and M. F. Coffin, “The development of paleoseaways around Antarctica,” Antarct. Res. Ser. 56, 7–30 (1992). doi: 10 .1029 /AR056p0007.

  46. G. Leitchenkov, H. Miller, and E. Zatzepin, “Structure and Mesozoic evolution of the Eastern Weddell Sea, Antarctica: history of early Gondwana break-up,” In: Weddell Sea Tectonics and Gondwana Break-up, Ed. by B. Storey, E. King, and R. Livermore, Geol. Soc. London Spec. Publ. 108, 175–190 (1996).

  47. G. L. Leitchenkov and V. N. Masolov, “Tectonic and magmatic history of the Weddell Sea region,” In: Breakup Processes – Jurassic to Recent Antarctic Region: Geological Evolution and Processes. Proc. VII th Int. Symp. on Antarctic Earth Science, Ed. by G. L. Leitchenkov and T. Wilson, (1997), pp. 461–466 (1997).

  48. G. L. Leichenkov, Yu. B. Guseva, and V. V. Gandyukhin, “Structrue of the crust and tectonic evolution of the eastern part of the Weddell and Lazarev seas,” Razved. Okhr. Nedr, No. 2, 43–47 (2016).

    Google Scholar 

  49. A. V. Luttinen, “Bilateral geochemical asymmetry in the Karoo large igneous province,” Sci. Rep. 8, 5223–5234 (2018).

    Article  Google Scholar 

  50. A. V. Luttinen and H. Furnes, “Flood basalts of Vestfjella: Jurassic magmatism across an Archaean–Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica,” J. Petrol. 41, 1271–1305 (2000). https://doi.org/10.1093/petrology/41.8.1271

    Article  Google Scholar 

  51. A. V. Luttinen and J. U. Siivola, “Geochemical characteristics of Mesozoic lavas and dikes from Vestfjella, Dronning Maud Land: recognition of three distinct chemical types,” The Antarctic Region: Geological Evolution and Processes, Ed. by C. A. Ricci, Terra Antarct. Publ. Sienna 7, (1997) 495–503.

    Google Scholar 

  52. A. V. Luttinen, O. T. Rämö, and H. Huhma, “Neodymium and strontium isotopic and trace element composition of a Mesozoic CFB suite from Dronning Maud Land, Antarctica: implications for lithosphere and asthenosphere contributions to Karoo magmatism,” Geochim. Cosmochim. Acta 62, 2701–2714 (1998). https://doi.org/10.1016/S0016-7037(98)00184-7

    Article  Google Scholar 

  53. A. V. Luttinen, X. Zhang, and K. A. Foland, “159 Ma Kjakebeinet lamproites (Dronning Maud Land, Antarctica) and their implications for Gondwana breakup processes,” Geol. Mag. 139, 525–539 (2002). https://doi.org/10.1017/S001675680200674X

    Article  Google Scholar 

  54. A. V. Luttinen, P. T. Leat, and H. Furnes, “Björnnutane and Sembberget basalt lavas and the geochemical provinciality of Karoo magmatism in western Dronning Maud Land, Antarctica,” J. Volcanol. Geotherm. Res. 198, 1–18 (2010). https://doi.org/10.1016/j.jvolgeores.2010.07.011

    Article  Google Scholar 

  55. A. V. Luttinen, J. S. Heinonen, M. Kurhila, F. Jourdan, I. Mänttäri, S. K. Vuori, and H. Huhma, “Depleted mantle-sourced CFB magmatism in the Jurassic Africa–Antarctica Rift: petrology and 40Ar/39Ar and U/Pb chronology of the Vestfjella Dyke Swarm, Dronning Maud Land, Antarctica,” J. Petrol. 56, 919–952 (2015). https://doi.org/10.1093/petrology/egv022

    Article  Google Scholar 

  56. J. S. Marsh, P. R. Hooper, J. Rehacek, R. A. Duncan, and A. R. Duncan, “Stratigraphy and age of Karoo basalts of Lesotho and Implications for correlations within the Karoo Igneous Province,” In: Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism, Ed. by J. J. Mahoney and M. F. Coffin, Geophys. Monogr. 100, 247–272 (1997).

  57. A. K. Matzen, B. J. Wood, M. B. Baker, E. M. Stolper, “The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts,” Nat. Geosci. 10, 530–535 (2017).

    Article  Google Scholar 

  58. D. McKenzie and R. K. O’Nions, “Mantle reservoirs and oceanic basalts,” Nature 301, 229–231 (1983).

    Article  Google Scholar 

  59. E. N. Melankholina and N. M. Sushchevskaya, “Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 Supercontinent,” Geotectonics 51 (1), 40–52 (2017).

    Article  Google Scholar 

  60. E. N. Melankholina and N. M. Sushchevskaya, Tectonics of the Southern Ocean Passive Margins in the Africa–East Antarctica Region, Geotectonics 53 (4), 468–484 (2019).

    Article  Google Scholar 

  61. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D. V. Kuz’min, “Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys. 58 (11), 1289–1304 (2017).

    Article  Google Scholar 

  62. M. Moreira, C. Gautheron, K. Breddam, J. Curtice, and M. D. Kurz, “Solar neon in the Icelandic mantle: New evidence for an undegassed lower mantle,” Earth Planet. Sci. Lett. 185, 15–23 (2001).

    Article  Google Scholar 

  63. A. B. Moyes, J. R. Krynauw, and J. M. Barton, “The age of the Ritscherflya Supergroup and Borgmassivet Intrusions, Dronning Maud Land, Antarctica,” Antarct. Sci. 7, 87–97 (1995). https://doi.org/10.1017/S0954102095000125

    Article  Google Scholar 

  64. C. Natali, L. Beccaluva, G. Bianchini, and F. Siena, “Comparison among Ethiopia–Yemen, Deccan, and Karoo continental flood basalts of central Gondwana: Insights on lithosphere versus asthenosphere contributions in compositionally zoned magmatic provinces,” Geol. Soc. Am. Spec. Pap. 526, 191–215 (2017). https://doi.org/10.1130/2017.2526(10)

    Article  Google Scholar 

  65. M. Peters, B. Haverkamp, R. Emmermann, H. Kohnen, and K. Weber, “Palaeomagnetism, K–Ar dating and geodynamic setting of igneous rocks in western and central Neuschwabenland, Antarctica,” In: Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarctic Earth Sciences, Ed. by M. R. A. Thomson, J. A. Crame, and J. W. Thomson (Cambridge University Press. Cambridge, 1991), pp. 549–555.

  66. T. R. Riley, P. T. Leat, M. L. Curtis, I. L. Millar, R. A. Duncan, and A. Fazel, “Early–middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo large igneous province,” J. Petrol. 46, 1489–1524 (2005).

    Article  Google Scholar 

  67. N. Søager, M. Portnyagin, K. Hoernle, P. M. Holm, F. Hauff, and D. Garbe-Schönberg, “Olivine major and trace element compositions in southern Payenia basalts, Argentina: evidence for pyroxenite–peridotite melt mixing in a back-arc setting,” J. Petrol. 56 (8), 1495–1518 (2015).

    Article  Google Scholar 

  68. A. V. Sobolev, A. W. Hofmann, S. V. Sobolev, and I. K. Nikogosian, “An olivine–free mantle source of Hawaiian shield basalts,” Nature 434, 590–597 (2005). https://doi.org/10.1038/nature03411

    Article  Google Scholar 

  69. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, I. K. Nikogosian, A. Rocholl, I. A. Sigurdsson, N. M. Sushchevskaya, M. Teklay, “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007). https://doi.org/10.1126/science.1138113

    Article  Google Scholar 

  70. A. V. Sobolev, N. A. Krivolutskaya, and D. V. Kuzmin, “Petrology of the parental melts and mantle sources of Siberian trap magmatism,” Petrology 17 (3), 253–286 (2009).

    Article  Google Scholar 

  71. G. Spaeth and P. Schüll, “A survey of Mesozoic dolerite dikes from Western Neuschwabenland, Antarctica, and their geotectonic significance,” Polarforschung 57 (l/2), 93–113 (1987).

  72. N. A. Stroncik and C. W. Devey, “Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions,” Nature Geosci. 4, 39–397 (2011).

    Article  Google Scholar 

  73. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in magmatism in the ocean basins,” Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  74. N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatskii, and A. A. Peyve, “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, south Atlantic Ocean,” Geochem. Int. 41 (1), 1–20 (2003).

    Google Scholar 

  75. N. M. Sushchevskaya, B. V. Belyatsky, G. L. Leitchenkov, V. G. Batanova and A. V. Sobolev, “Geochemical characteristics of Jurassic plume magmatism in Ahlmannryggen Massif (Queen Maud Land, East Antarctica),” Dokl. Earth Sci. 486 (1), 529–532 (2019).

    Article  Google Scholar 

  76. H. Svensen, F. Corfu, S. Polteau, Ø. Hammer, and S. Planke, “Rapid magma emplacement in the Karoo Large Igneous Province,” Earth Planet. Sci. Lett. 325–326, 1–9 (2012).

    Article  Google Scholar 

  77. J. Tuff, E. Takahashi, and S. A. Gibson, “Experimental constraints on the role of garnet pyroxenite in the genesis of high–Fe mantle plume derived melts,” J. Petrol. 46 (10), 2023–2058 (2005).

    Article  Google Scholar 

  78. J. J. Veevers, “Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland,” Earth-Sci. Rev. 111, 249–318 (2012).

    Article  Google Scholar 

  79. S. K. Vuori and A. V. Luttinen, “The Jurassic gabbroic intrusions of Utpostane and Muren: insights into Karoo–related plutonism in Dronning Maud Land Antarctica,” Antarct. Sci. 15, 283–301 (2003).

    Article  Google Scholar 

  80. B. L. Weaver, D. A. Wood, J. Tarney, and J.-L. Joron, “Role of subducted sediment in the genesis of ocean island basalts: Geochemical evidence from South Atlantic Ocean islands,” Geology 14, 275–278 (1986).

    Article  Google Scholar 

  81. Z. F. Yang, J. Li, W. F. Liang, and Z. H. Luo, “On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: implications for source lithology and the origin of basalts,” Earth-Sci. Rev. 157, 18–31 (2016).

    Article  Google Scholar 

  82. X. Zhang, A. V. Luttinen, D. H. Elliot, K. Larsson, and K. A. Foland, “Early stages of Gondwana breakup: the 40Ar/39Ar geochronology of Jurassic basaltic rocks from western Dronning Maud Land, Antarctica, and implications for the timing of magmatic and hydrothermal events,” J. Geophys. Res. B108, (2003). https://doi.org/10.1029/2001JB001070

  83. A. Zindler and S. Hart, “Chemical geodynamics,” Annu. Rev. Earth Planet. Sci. Lett. 14, 493–571 (1986).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Ariskin and A. A. Tsygankov for reviewing and useful comments that significant improved the manuscript.

Funding

The work was supported by the Russian Science Foundation (project no. 16-17-10139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Sushchevskaya, G. L. Leitchenkov or B. V. Belyatsky.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Sobolev, A.V., Leitchenkov, G.L. et al. Role of Pyroxenite Mantle in the Formation of the Mesozoic Karoo Plume Melts: Evidence from the Western Queen Maud Land, East Antarctica. Geochem. Int. 59, 357–376 (2021). https://doi.org/10.1134/S001670292104008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292104008X

Keywords:

Navigation