Skip to main content

Isotopic Composition of Noble Gases, Nitrogen, and Carbon in the Ozerki New L Chondrite

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The isotopic composition of noble gases, nitrogen, and carbon in two samples of the Ozerki L chondrite, which differ in the degree of impact metamorphism, analyzed by the methods of stepwise oxidation and crushing, is reported. The data obtained indicate that the meteorite contains gases trapped on the asteroid during the impact events. The isotopic composition of trapped argon, studied by the stepwise crushing method, is dominated by radiogenic 40Ar (the average 40Ar/36Ar values are 846 in the chondrite material and 1908 in the melt with fine chondrite fragments). Most of the trapped 36Ar is located in positions inaccessible for crushing. The isotopic composition of Ne is a mixture of the solar-wind neon, cosmogenic, and most likely planetary (Q) components. The elemental composition of the trapped noble gases is formed by mixing of the solar, planetary (Q), and cosmogenic components in different proportions. Diffusion processes caused by impact events most likely influenced the elemental abundance of noble gases, primarily helium. Almost all carbon and nitrogen are chemically bound in the rock. In general, their isotopic composition corresponds to that of ordinary chondrites; however, an atypically light carbon isotopic composition with a bulk value δ13C = –47.6 ± 4.8 (‰) was detected in a sample of the chondrite material. The nitrogen released during crushing is isotopically lighter than that released during oxidation. This may indicate that in the course of impact processes, solar nitrogen is more easily mobilized and redistributed into voids than organic nitrogen enriched in the heavy isotope.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. 1

    V. A. Alexeev, G. V. Kalinina, K. A. Lorents, and T. A. Pavlova, “Track studies of 2018 meteorite falls, common chondrites Ablaketka (H5) and Ozerki (L6),” Proc. All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG-2019), Moscow, Russia 2019 (GEOKHI RAS, Moscow, 2019), pp. 251–254.

  2. 2

    K. Armstrong and A. M. Ruzicka, “Major-element geochemistry of large, igneous-textured inclusions in ordinary chondrites,” 46th Lunar and Planetary Science Conference, held March 16–20, 2015 in The Woodlands, Texas, LPI Contribution No. 1832: 1572 (2015).

  3. 3

    M. Bennett, III and H. McSween, Jr., “Shock features in iron–nickel metal and troilite of L-group ordinary chondrites,” Meteorit. Planet. Sci.31, 255–264 (1996).

    Google Scholar 

  4. 4

    H. Busemann, E. R. Toth, P. L. Clay, J. D. Gilmour, M. Nottingham, I. Strashnov, R. Wieler, K. Nishiizumi and R. H. Jones, “Noble gases in the LL5 chondrite Chelyabinsk,” 45th Lunar and Planetary Science Conference, abstract #2805 (2014). CD–ROM.

  5. 5

    R. T. Dodd and E. Jarosewich “Olivine microporphyry in the St. Mesmin chondrite,” Meteoritics 11, 1–20 (1976).

    Google Scholar 

  6. 6

    P. Eberhardt, O. Eugster, and K. Marti, “A redetermination of the isotopic composition of atmospheric neon,” Z. Naturforsch. Teil A. 20, 623–624 (1965).

    Google Scholar 

  7. 7

    A. V. Efimov, A. P. Kartashova, and A. K. Murtazov, “Visual spectrum of chondrite L6 meteorite Ozerki,” Meteorit. Planet. Sci. 54(S2): #6334 (2019).

  8. 8

    O. Eugster and Th. Michel “Common asteroid break–up events of eucrites, diogenites, and howardites and cosmic–ray production rates for noble gases in achondrites,” Geochim. Cosmochim. Acta 59, 177–199 (1995).

    Google Scholar 

  9. 9

    O. Eugster, J. Beer, M. Burger, R. C. Finkel, H. J. Hofmann, U. Krähenbühl, Th. Michel, H. A. Synal, and W. Wölfli, “History of the paired lunar meteorites MAC88104 and MAC88105 derived from noble gas isotopes, radionuclides, and some chemical abundances,” Geochim. Cosmochim. Acta 55, 3139–3148 (1991).

    Google Scholar 

  10. 10

    A. V. Fisenko, A. B. Verchovsky, A. A. Shiryaev, L. F. Semjonova, A. A. Averin, A. L. Vasiliev, and M. S. Nickolsky, “On the carrier phase of the "planetary” noble gases: TEM, Raman, and stepped combustion data for acid–resistant residues from the Saratov (L4) meteorite,” Meteorit. Planet. Sci. 53, 2343–2356 (2018).

    Google Scholar 

  11. 11

    R. Fodor, M. Prinz, and K. Keil, „Implications of K–rich lithic fragments and chondrules in the Bhola brecciated chondrite,” Program of the 1974 Annual Meeting, Geological Society of America (1974), pp. 739–740.

  12. 12

    E. M. Galimov, V. P. Kolotov, M. A. Nazarov, Yu. A. Kostitsyn, I. V. Kubrakova, N. N. Kononkova, I. A. Roshchina, V. A. Alexeev, L. L. Kashkarov, D. D. Badyukov, and V. S. Sevast’yanov, “Analytical results for the material of the Chelyabinsk meteorite,” Geochem. Int. 51 (7), 522–539 (2013).

    Google Scholar 

  13. 13

    M. M. Grady and I. P. Wright, “Elemental and isotopic abundances of carbon and nitrogen in meteorites,” Space Sci. Rev. 106, 231–248 (2003).

    Google Scholar 

  14. 14

    A. Grimberg, H. Baur, P. Bochsler, F.Bühler, D. S. Burnett, C. C. Hays, V. S. Heber, A. J. G. Jurewicz, and R. Wieler, “Solar wind neon from Genesis: Implications for the lunar noble gas record,” Science 314, 1133–1135 (2006).

    Google Scholar 

  15. 15

    M. K. Haba, H. Sumino, K. Nagao, T. Mikouchi, M. Komatsu, and M. E. Zolensky, “Noble gases in the Chelyabinsk meteorite,” 45th Lunar and Planetary Science Conference, abstract #1732 (2014). CD–ROM.

  16. 16

    V. S. Heber, R. Wieler, H. Baur, C. Olinger, T. A. Friedmann, and D. S. Burnett, “Noble gas composition of the solar wind as collected by the Genesis mission,” Geochim. Cosmochim. Acta. 73, 7414–7432 (2009).

    Google Scholar 

  17. 17

    W. Kempe and O. Müller, “The stone meteorite Kraechenberg. Its chemical composition and the Rb/Sr age of the light and dark portions,” Meteorite Research, Ed. by P. M. Millman, (Reidel, Dordrecht, 1969), pp. 721–737.

    Google Scholar 

  18. 18

    E. V. Korochantseva, M. Trieloff, C. A. Lorenz, A. I. Buykin, M. A. Ivanova, W. H. Schwarz, J. Hopp, and E. K. Jessberger, “L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating,” Meteorit. Planet. Sci. 42, 113–130 (2007).

    Google Scholar 

  19. 19

    E. V. Korochantseva, M. Trieloff, J. Hopp, A. I. Buykin, and A. V. Korochantsev, “40Ar–39Ar dating of solar gas–rich lunar meteorite Dhofar 1436,” Meteorit. Planet. Sci. 44 (Suppl.), A113 (2009).

    Google Scholar 

  20. 20

    E. V. Korochantseva, A. I. Buikin, A. B. Verchovsky, J. Hopp, A. V. Korochantsev, M. Anand, and M. Trieloff, “Noble Gas, N and C Stepwise heating and crushing data for the Lunar meteorite Dhofar 1436,” Meteorit. Planet. Sci. 52, #6258 (2017).

  21. 21

    E. V. Korochantseva, A. I. Buikin, and M. Trieloff, “Trapped extraterrestrial argon in meteorites,” Geochem. Int. 55 (11), 971–976 (2017).

    Google Scholar 

  22. 22

    E. V. Korochantseva, A. I. Buikin, A. B. Verchovsky, C. A. Lorenz, and A. V. Korochantsev, “Noble gases, nitrogen and carbon isotopic compositions of the Ghubara meteorite, revealed by stepwise combustion and crushing methods,” Geochem. Int. 56, 1384–1397 (2018).

    Google Scholar 

  23. 23

    E. V. Korochantseva, A. B. Verchovsky, K. A. Lorenz, A. I. Buikin, and A. V. Korochantsev, “First data on noble gases and nitrogen obtained by stepwise oxidation and brecciation in Ozerki Chondrite,” Proc. 12thVinogradov Symposium on Isotope Geochemistry, Moscow, Russia,2019 (Moscow, 2019), p. 48 [in Russian].

  24. 24

    E. V. Korochantseva, A. I. Buikin, J. Hopp, A. B. Verchovsky, A. V. Korochantsev, M. Anand, M. Trieloff, “Noble gas elemental ratios revealed by stepwise combustion and crushing methods in the lunar Dhofar 1436 meteorite,” 50th Lunar and Planetary Science Conference, abstract #2319 (2019). CD–ROM

  25. 25

    J. Kunz, M. Falter, and E. Jessberger, “Shocked meteorites: argon-40–argon-39 evidence for multiple impacts,” Meteorit. Planet. Sci. 32, 647–670 (1997).

    Google Scholar 

  26. 26

    J.-Y. Lee, K. Marti, J. P. Severinghaus, K. Kawamura, H.‑S. Yoo, J. B. Lee, and J. S. Kim, “A redetermination of the isotopic abundances of atmospheric Ar,” Geochim. Cosmochim. Acta 70, 4507–4512 (2006).

    Google Scholar 

  27. 27

    I. Leya and J. Masarik, “Cosmogenic nuclides in stony meteorites revisited,” Meteorit. Planet. Sci. 44, 1061–1086 (2009).

    Google Scholar 

  28. 28

    C. A. Lorenz, E. V. Korochantseva, J. Hopp, I. Franchi, M. Humayun, S. N. Teplyakova, and N. N. Kononkova, “Northwest Africa 6486. A melt rock from the L‑Chondrite asteroid. 49th Lunar and Planetary Science Conference, abstract #2406 (2018). CD-ROM.

  29. 29

    A. A. Maksimova, E. V. Petrova, A. V. Chukin, M. S. Karabanalov, I. Felner, M. Gritsevich, and M. I. Oshtrakh, “Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6,” Meteorit. Planet. Sci. 55, 231–244 (2020).

    Google Scholar 

  30. 30

    J. Matsuda, H. Tsukamoto, C. Miyakawa, and S. Amari “Noble gas study of the Saratov L4 chondirte,” Meteorit. Planet. Sci.45, 361–372 (2010).

    Google Scholar 

  31. 31

    J. Matsuda, K. Morishita, M. Nara, and S. Amari “Noble gases in oxidized residue prepared from the Saratov L4 chondrite and Raman spectroscopic study of residues to characterize phase Q,” Meteorit. Planet. Sci. 51, 70–79 (2016).

    Google Scholar 

  32. 32

    Meteoritical Bulletin No. 107. (2018) Ozerki // https:// www.lpi.usra.edu/meteor/metbull.php?sea=Ozerki& sfor=names&ants=&nwas=&falls=&valids=&stype= contains&lrec=50&map=ge&browse=&country=All& srt=name&categ=All&mblist=All&rect=&phot=& strewn=&snew=0&pnt=Normal%20table&code=67709

  33. 33

    R. F. Muftakhetdinova, A. Yu. Pastukhovich, G. A. Yakovlev, and V. I. Grokhovsky, “Structural features of the impact melt of the ordinary chondrite Ozerki L6: preliminary data,” Meteorit. Planet. Sci. 54 (S2), 6159 (2019).

    Google Scholar 

  34. 34

    U. Ott, “Noble gases in meteorites – trapped components,” In Noble Gases in Geochemistry and Cosmochemistry, Ed. by D. Porcelli, C. J. Ballentine, and R. Wieler, Rev. Mineral. Geochem. 47, 71–100 (2002).

    Google Scholar 

  35. 35

    A. Ruzicka, G. Snyder, and L. Taylor, “Mega-chondrules and large, igneous-textured clasts in Julesberg (L3) and other ordinary chondrites: vapor-fractionation, shock-melting, and chondrule formation,” Geochim. Cosmochim. Acta 62, 1419–1442 (1998).

    Google Scholar 

  36. 36

    A. Ruzicka, G. A. Snyder, and L. A. Taylor, “Geochemical and isotopic evidence bearing on the origin of large igneous–textured inclusions in ordinary chondrites,” 13thAntarctic Meteorite Research. NIPR Symposium, 19–38 (2000).

  37. 37

    T. M. Smith S. Li., P. M. Ranjith, F. Su, J. Gattacceca, AST-ER Team, and H. He, “Cosmic–ray exposure age and pre–atmospheric size of three recent falls (L6),” Meteorit. Planet. Sci. 54(S2), 6155 (2019).

  38. 38

    R. H. Steiger and E. Jäger, “Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Google Scholar 

  39. 39

    D. Stőffler, K. Keil, and E. R. D. Scott, “Shock metamorphism of ordinary chondrites,” Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Google Scholar 

  40. 40

    M. Trieloff, E. V. Korochantseva, A. I. Buikin, J. Hopp, M. A. Ivanova, and A. V. Korochantsev, “The Chelyabinsk meteorite: thermal history and variable shock effects recorded by the 40Ar–39Ar system,” Meteorit. Planet. Sci. 53, 343–358 (2018).

    Google Scholar 

  41. 41

    M. Trieloff, A. Deutsch, J. Kunz, and E. K. Jessberger, “Redistribution of potassium and radiogenic argon by moderate shock pressures in experimentally shocked gabbro,” Meteoritics 29, 541 (1994a).

    Google Scholar 

  42. 42

    M. Trieloff, J. Kunz, and E. K. Jessberger, “High–resolution 40Ar–39Ar dating of K-rich chondritic inclusions,” Meteoritics 29, 541–542 (1994b).

    Google Scholar 

  43. 43

    A. B. Verchovsky, “Origin of isotopically light nitrogen in meteorites,” Geochem. Int. 55(11), 957–970 (2017).

    Google Scholar 

  44. 44

    A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova, and C. T. Pillinger, “Heterogeneous distribution of xenon–HL within presolar diamonds,” Meteorit. Planet. Sci. 32, A131–A132 (1997).

    Google Scholar 

  45. 45

    A. B. Verchovsky, A.V. Fisenko, L. F. Semjonova, I. P. Wright, M. R. Lee, and C. T. Pillinger, “C, N, and noble gas isotopes in grain size separates of presolar diamonds from Efremovka,” Science 281, 1165–1168 (1998).

    Google Scholar 

  46. 46

    A. B. Verchovsky, M. A. Sephton, I. P. Wright, and C. T. Pillinger “Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion,” Earth Planet. Sci. Lett. 199, 243–255 (2002).

    Google Scholar 

  47. 47

    J. T. Wasson and G. W. Kallemeyn “Compositions of chondrites,” Philos. Trans. R. Soc. London, Ser. A, Mathem. Phys. Sci. 325, 535–544 (1988).

    Google Scholar 

  48. 48

    F. Wlotzka, B. Spettel, and A. Pedroni, “K-rich lithic clasts in the Acfer 111 H–chondrite,” Meteoritics 27, 308 (1992).

    Google Scholar 

  49. 49

    F. Wlotzka, H. Palme, B. Spettel, and W. Waenke, “Alkali differentiation in LL–chondrites,” Geochim. Cosmochim. Acta 47, 743–757 (1983).

    Google Scholar 

  50. 50

    I. P. Wright and C.T. Pillinger “Carbon isotopic analysis of small samples by use of stepped–heating extraction and static mass spectrometry,” U.S. Geol. Bul. 7890, 9–34 (1989).

    Google Scholar 

  51. 51

    I. P. Wright, S. R. Boyd, I. A. Franchi, and C. T. Pillinger, “High precision determination of nitrogen stable isotope ratios at the sub–nanomole level,” J. Phys. E. 21, 865–875 (1988).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the referees M.A. Ivanova and A.A. Shiryaev for valuable comments that helped to improve the manuscript.

Funding

The work was carried out as a part of the State Task, no. 137-2020-15 and was partially supported by the Russian Foundation for Basic Research, project no. 17-05-01078.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to E. V. Korochantseva or A. I. Buikin.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korochantseva, E.V., Verchovsky, A.B., Buikin, A.I. et al. Isotopic Composition of Noble Gases, Nitrogen, and Carbon in the Ozerki New L Chondrite. Geochem. Int. 58, 1239–1256 (2020). https://doi.org/10.1134/S0016702920110075

Download citation

Keywords:

  • meteorites
  • L chondrite
  • noble gases
  • nitrogen
  • carbon
  • stepwise crushing and oxidation