Skip to main content
Log in

Geochemical Trends in the Formation of Atmospheric Precipitation in the Conditionally Background Area of the Valdai National Park

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports chemical data on the atmospheric precipitation within the studied area of the Valdai National Park during monitoring in 2015–2018. The main parameters of atmospheric precipitation as well as major and trace-element compositions of waters are analyzed. Seasonal dynamics and possible pathways of element uptake in atmospheric precipitation are considered. Multidimensional statistical analysis (PCCA, RDA analyses) was applied to determine geochemical and anthropogenic factors responsible for the formation of the chemical composition of atmospheric precipitation. Precipitations penetration through tree crown are enriched in organic matter and some elements. The high contents of N, Fe, Mn, Zn, and Cu found in subcrown waters indicate a predominant biogenic migration of the elements with atmospheric fallouts. The elevated contents of Cu and Zn, as well as Cd and Pb in the atmospheric fallouts of the Valdai National Park suggest that the studied area experiences a regional-scale anthropogenic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. A. Alekin, Principles of Hydrochemistry (Leningrad, Gidrometeoizdat, 1970) [in Russian].

    Google Scholar 

  2. I. V. Archegova, “Influence of wood plants on the chemical composition of atmospheric precipitation during recovery of the middle taiga forests,” Lesovedenie, No. 3, 34–43 (2011).

    Google Scholar 

  3. D. Barałkiewicz and J. Siepak, “Chromium, Nickel and Cobalt in Environmental Samples and Existing Legal Norms,” Pol. J. Environ. Stud. 8 (4), 201–208 (1999).

    Google Scholar 

  4. N. D. Davydova, “Formation of the chemical composition of water objects of the Southern Minusa Basin under atmospheric pollution,” Usp. Sovremen. Estestvozn., No. 12, 134–139 (2017).

  5. A. Eaton, E. Arnold, A. E. Archie, E. W. Rice, and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater (APHA, Washington, 1992).

    Google Scholar 

  6. Ø. A. Garmo, B. L. Skjelkvåle, H. D. de Wit, L. Colombo, C. Curtis, J. Fölster, A. Hoffmann, J. Hruška, et al., “Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008,“ Water, Air, Soil Pollut. 225, 1–14 (2014).

    Article  Google Scholar 

  7. S. Garnaud, J.-M. Mouchel, G. Chebbo, and D. Thevenot, “Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff,” Sci. Total Environ. 235 (1—3), 235–245 (1999).

    Article  Google Scholar 

  8. N. Gruber and J. N. Galloway, “An Earth–system perspective of the global nitrogen cycle,” Nature 451, 293–296 (2008).

    Article  Google Scholar 

  9. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Climate Change (Cambridge University Press, New York, 2001).

    Google Scholar 

  10. R. B. Husar, J. M. Prospero, and L. Stowe “Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product,” J. Geophys. Res. 102 (14), 889–909 (1997).

    Article  Google Scholar 

  11. S. V. Karakeka, “Chemical composition of atmospheric precipitation, Belarussian Environment, Ed. by V. F. Loginova (Minsk, 2002), pp. 118–123 [in Russian].

    Google Scholar 

  12. L. I. Kitaeva, “Relationship between Fe, Zn, Mn, and humus content and acidity in soils of the Penza oblast,” Pochvovedenie, No. 9, 132–135 (1990).

    Google Scholar 

  13. B. Kvaeven, M. J. Ulstein, B. L. Skjelkvåle, G. G. Raddum, and H. Hovind, “ICP waters–an international programme for surface water monitoring,“ Water, Air, & Soil Pollut. 130, 775–780 (2001).

    Article  Google Scholar 

  14. T. I. Moiseenko and N. A. Gashkina, “Biogeochemistry of Cd: anthropogenic dispertion, bioaccumulation, and ecotoxicity,” Geochem. Int. 56 (8), 798–811 (2018).

    Article  Google Scholar 

  15. T. I. Moiseenko, V. A. Dauvalter, and L. Ya. Kagan, “Mountain lakes as indicators of air pollution,” Water Res. 24 (5), 556–564 (1997).

    Google Scholar 

  16. T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, “Enrichment of surface water by elements: effects of air pollution, acidification and eutrophication,“ Environ. Process, No. 3, 39–58 (2016).

    Article  Google Scholar 

  17. V. V. Nikonov, N. V. Lukina, V. S. Bezel’, E. A. Bel’skii, A. Yu. Bespalova, A. V. Golovchenko, T. T. Gorbacheva, T. G. Dobrovol’skaya, V. V. Dobrovol’skii, N. V. Zukert, L. G. Isaeva, A. G. Lapenis, I. A. Maksimova, O. E. Marfenina, A. N. Panikova, D. L. Pinskii, L. M. Polyanskaya, E. Staines, A. I. utkin, M. V. Frontas’eva, V. V. Tsibul’skii, I. Yu. Chernov, and M. A. Yatsenko-Khmelevskaya, Trace Elements in Boreal Forests (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  18. P. H. Nye, “Organic matter and nutrient cycles under moist tropical forests,“ Plant. Soil. 13 (4), 333–346 (1961).

    Article  Google Scholar 

  19. D. S. Orlov, and O. S. Bezuglova, Biogeochemistry (Feniks, Rostov on Don, 2000), pp 236–238.

    Google Scholar 

  20. A. I. Perelman, Geochemistry (Vyssh. Shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  21. G. V. Pirogovskaya and S. S. Khmelevskaya, “Chemical composition of atmospheric precipitation in the central and southeastern Belorussia,” Pochvoved. Agrokhim. 2 (39), 246–254 (2007).

    Google Scholar 

  22. T. A. Pristova, “Role of atmospheric precipitation in the biological circulation of carbon, nitrogen, and ash elements of deciduous—coniferous forest of the middle taiga,” Vestn. Inst. Biol., No. 12, 213–221 (2005).

  23. T. A. Pristova and I. V. Zaboeva, “Chemical composition of atmospheric precipitation and lysimetric water in an iron–illuvial podzol under mixed forest plantations in the Republic of Komi,” Euras. Soil Sci. 40 (12), 1316–1325 (2007).

    Google Scholar 

  24. R. G. Revazyan, E. G. Babayan, and M. A. Khalifyan, “Chemical composition of crown waters in forests from the Dilizhan Reserve,” Biol. Zh. Armenii 36 (3), 219–222 (1983).

    Google Scholar 

  25. V. S. Savenko, “Atmospheric aerosols as phosphorus source in water ecosystems,” Vodn. Res., 22 (2), 187–196 (1995).

    Google Scholar 

  26. A. A. Shaikhutdinova, O. N. Nemereshina, and N. F. Gusev, “Heavy metal and fluorine distribution in natural waters in the influence zones of the cryolitic production,” Izv. OGAU 68 (6), 216–219 (2017).

    Google Scholar 

  27. Ts. A. Shver, Atmospheric Precipitation on the USSR Territory (Gidroeteoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  28. B. L. Skjelkvåle, T. Andersen, E. Fjeld, J. Mannio, A. Wilander, K. Johansson, J. P. Jensen, and T. Moiseenko, “Heavy metal surveys in Nordic lakes; concentrations, geographic patterns and relation to critical limits,” Ambio 30 (1), 2–10 (2001).

    Article  Google Scholar 

  29. Yu. N. Sokolov, “A general plan of the Valdai municipal settlement, the Valdai district, Novgorod oblast. Natural Conditions and Assessment of Environmental State. Substantiation Materials (Velikii Novgorod, 2012), No. 2, pp. 13–23.

Download references

Funding

This paper was supported by the Russian Science Foundation (project no. 18-17-00184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Baranov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, D.Y., Moiseenko, T.I. & Dinu, M.I. Geochemical Trends in the Formation of Atmospheric Precipitation in the Conditionally Background Area of the Valdai National Park. Geochem. Int. 58, 1159–1173 (2020). https://doi.org/10.1134/S0016702920100031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920100031

Keywords:

Navigation