Skip to main content
Log in

Dissolved Inorganic Carbon ([DIC], δ13С(DIC)) in Waters of the Eastern East Siberian Sea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Concentrations and carbon isotope composition of dissolved inorganic carbon (DIC) and isotope composition (δD, δ18O) of waters were studied in the eastern East Siberian Sea, along two submeridional sections extending from the Indigirka and Kolyma mouths to the edge of perennial ice. Estimated contents of river waters, sea ice meltwater, and modified waters showed that the eastern part of the shelf of the East Siberian Sea in summer, 2017 was globally freshened by riverine waters (6–57%). A slight contribution of sea ice meltwater (2–3%) was found only in the surface waters of the Kolyma section. The waters of the Indigirka section experienced intense modification, which is related to the ice formation and reaches 20% ice extraction from water. The concentration and δ13C values of DIC are controlled by mixing between sea water and river runoff. Their shift relative to the values determined by conservative mixing suggests that shelf waters contain an excess of DIC with an isotopically light carbon. Main processes leading to these shifts are the decomposition of organic matter and water modification. The rate of the latter is 3–4 times higher than that of organic matter oxidation. The isotope composition and concentrations of DIC could partially reflect the influence of Pacific seawaters coming through the Bering Strait and the Chukchi Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. [DIC] ≈ [CO2]aq + [HCO3] + [CO3]2–.

REFERENCES

  1. K. Aagard, “The role of sea ice and other fresh water in the Arctic circulation,” J. Geophys. Res. 94(10), 14485–14498 (1989).

    Google Scholar 

  2. K. Aagard, L. K. Coachman, and E. Carmack, “On the halocline of the Arctic Ocean,” Prog. Oceanography 28 (6), 529–545 (1981).

    Google Scholar 

  3. V. Alling, D. Porcelli, C.-M. Morth, L. G. Anderson, L. Sanchez-Garcia, O. Gustafsson, P. S. Andersson, and C. Humborg, “Degradation of terrestrial organic carbon, primary production and out–gassing of CO2 in the Laptev and East Siberian Seas as inferred from d13C values of DIC,” Geochim. Cosmochim. Acta 95, 143–159 (2012).

    Google Scholar 

  4. V. Alling, L. Sanchez-Garcia, D. Porcelli, S. Pugach, J. E. Vonk, B. van Dongen, C. M. Morth, L. G. Anderson, A. Sokolov, P. Andersson, C. Humborg, I. Semiletov, and O. Gustafsson, “Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas,” Global Biogeochem. Cycles 24 (4), GB4033 (2010).

    Google Scholar 

  5. L. G. Anderson, K. Olsson, and M. Chierici, “A carbon budget for the Arctic Ocean,” Global Biogeochem. Cycles 12 (3), 455–465 (1998).

    Google Scholar 

  6. L. G. Anderson, S. Jutterström, S. Hjalmarsson, I. Wåhlström, and I. P. Semiletov, “Out–gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition,” Geophys. Res. Lett. 36 (20), L20601 (2009).

    Google Scholar 

  7. N. Assayag, K. Rive, M. Ader, D. Jezequel, and P. Agrinier, “Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples,” Rapid Commun. Mass Spectrom. 20, 2243–2251 (2006).

    Google Scholar 

  8. R. Bacastow, C. D. Keeling, T. J. Lueker, and M. Wahlen, “The 13C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: Analysis of observations at Bermuda,” Global Biochem.Cycles 10 (2), 335–346 (1996).

    Google Scholar 

  9. D. Bauch, H. Erlenkeuser, and V. Stanovoy, “Freshwater distribution and brine waters in the southern Kara Sea in summer 1999 as depicted by δ18O results,” Siberian River Run–Off in the Kara Sea, Ed. by R. Stein , (Elsevier, Amsterdam, 2003), pp. 73–90.

    Google Scholar 

  10. D. Bauch, H. Erlenkeuser, and N. Andersen, “Water mass processes on Arctic shelves as revealed from 18O of H2O,” Glob. Planet. Change 48, 165–174 (2005).

    Google Scholar 

  11. D. Bauch, J. Hölemann, S. Willmes, M. Gröger, A. Novikhin, A. Nikulina, H. Kassens, and L. Timokhov, “Changes in distribution of brine waters on the Laptev Sea shelf in 2007,” J. Geophys. Res. 115, C11008 (2010).

    Google Scholar 

  12. D. Bauch, J. A. Hölemann, I. A. Dmitrenko, et al., “Impact of Siberian coastal polynyas on shelf–derived Arctic Ocean halocline waters,” J. Geophys. Res. 117, C00G12 (2012).

    Google Scholar 

  13. D. Bauch, J. Hölemann, A. Nikitina, C. Wegner, M. Janout, L. A. Timokhov, and H. Kassens, “Correlation of river water and local sea–ice melting on the Laptev Sea shelf (Siberian Arctic),” J. Geophys. Res. 118, 550–561 (2013).

    Google Scholar 

  14. D. Bauch, S. Torres-Valdes, I. Polyakov, A. Novikhin, I. Dmitrenko, J. McKay, and A. Mix, “Halocline water modification and along–slope advection at the Laptev Sea continental margin,” Ocean Sci. 10, 141–154 (2014).

    Google Scholar 

  15. D. Bauch, E. Cherniavskaya, and L. Timokhov, “Shelf basin exchange along the Siberian continental margin: Modification of Atlantic Water and Lower Halocline Water,” Deep–Sea Res. 115, 188–198 (2016).

    Google Scholar 

  16. D. Bauch, L. Polyak, and J. D. Ortiz “A baseline for the vertical distribution of the stable carbon isotopes of dissolved inorganic carbon (δ13C DIC) in the Arctic Ocean,” Arktos 1, 15 (2015).

    Google Scholar 

  17. V. S. Brezgunov, V. K. Debolskii, and V. V. Nechaev, “Characteristics of the formation and salinity upon mixing of sea and river waters in the Barentz and Kara Seas,” Water Res. 9 (4), 335–344 (1983).

    Google Scholar 

  18. G. Cauwet and I. Sidorov “The biogeochemistry of Lena River: organic carbon and nutrients distribution,” Mar. Chem. 53, 211–227 (1996).

    Google Scholar 

  19. L. W. Cooper, T. E. Whitledge, J. M. Grebmeier, and T. Weingartner, “The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait,” J. Geophys. Res. 102, 12563–12573 (1997).

    Google Scholar 

  20. L. W. Cooper, J. W. McClelland, R. M. Holmes, P. A. Raymond, J. J. Gibson, C. K. Guay, and B. J. Peterson, “Flow–weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers,” Geophys. Res. Lett. 35 (18), GL035007 (2008).

    Google Scholar 

  21. G. F. N. Cox and W. F. Weeks, “Salinity variations in sea ice,” J. Glac. 13 (67), 109–120 (1974).

    Google Scholar 

  22. H. Craig and L. Gordon, “Deuterium and oxygen–18 variations in the ocean and the marine atmosphere,” Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoletto, Italy, Ed. by E. V. Tongiogi and E. F. Lishi (Pisa, 1965), pp. 9–130.

    Google Scholar 

  23. E. O. Dubinina, A. Yu. Miroshnikov, S. A. Kossova, and S. A. Shchuka, “Modification of the Laptev Sea freshened shelf waters based on isotope and salinity relations,” Geochem. Int. 57(1), 1–19 (2019).

    Google Scholar 

  24. E. O. Dubinina, S. A. Kossova and A. Yu. Miroshnikov, “Sources and mechanisms of seawater freshening in Tsivolky and Sedov bays (Novaya Zemlya Archipelago) based on isotope data (δD and δ18O),” Oceanology 59 (6), 836–847 (2019).

    Google Scholar 

  25. E. O. Dubinina, S. A. Kossova, A. Y. Miroshnikov, et al. “Isotope (δD, δ18O) systematics in waters of the Russian Arctic seas.” Geochem. Int. 55 (11), 1022–1032 (2017)

    Google Scholar 

  26. B. Ekwurzel, P. Schlosser, R. Mortlock, and R. Fairbanks, “River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean,” J. Geophys. Res. 106, 9075–9092 (2001).

    Google Scholar 

  27. H. Erlenkeuser, H. H. Cordt, J. Simstich, D. Bauch, and R. F. Spielhagen, “DIC stable carbon isotope pattern in the surface waters of the southern Kara Sea, September 2000,” In Siberian River Run–off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 281–307.

    Google Scholar 

  28. ESRL Global Monitoring Division (NOAA ESRL GMD), https://www.esrl.noaa.gov/gmd/

  29. E. M. Galimov, “The pattern of δ13Corg versus HI/OI relation in recent sediments as an indicator of geochemical regime in marine basins: comparison of the Black Sea, Kara Sea, and Cariaco Trench,” Chem. Geol. 204, 287–301 (2004).

    Google Scholar 

  30. E. M. Galimov, L. A. Kodina, O. V. Stepanets, and G. S. Korobeinik, “Biogeochemistry of the Russian Arctic. Kara Sea: Research Results under the SIRRO Project, 1995–2003,” Geochem. Int. 44 (11), 1053–1104 (2006).

    Google Scholar 

  31. D. R. Griffith, A. P. McNichol, L. Xu, F. A. McLaughlin, R. W. Macdonald, K. A. Brown, and T. I. Eglinton, “Carbon dynamics in the western Arctic Ocean: insights from full–depth carbon isotope profiles of DIC, DOC, and POC,” Biogeosciences 9, 1217–1224 (2012).

    Google Scholar 

  32. N. Gruber, C. D. Keeling, R. B. Bacastow, P. R. Guenther, T. J. Lueker, M. Wahlen, H. A. J. Meijer, W. G. Mook, and T. F. Stocker, “Spatiotemporal patterns of carbon–13 in the global surface oceans and the oceanic Suess effect,” Global Biogeochem. Cycles 13, 307–335 (1999).

    Google Scholar 

  33. M. A. Johnson and I. V. Polyakov, “The Laptev Sea as a source for recent Arctic Ocean salinity changes,” Geophys. Res. Lett. 28(10), 2017–2020 (2001).

    Google Scholar 

  34. H. Kassens, H. A. Bauch, I. A. Dmitrenko, H. Eicken, H.‑W. Hubberten, M. Melles, J. Thiede, and L. A. Timokhov, Land–Ocean Systems in the Siberian Arctic: Dynamics and History (Springer Science & Business Media, 2012).

    Google Scholar 

  35. P. M. Kroopnick, “The distribution of δ13C of ΣDIC in the world oceans,” Deep–Sea Res. 32 (1), 57–87 (1985)

    Google Scholar 

  36. R. Létolle, J. Martin, A. Thomas, V. Gordeev, S. Gusarova, and I. Sidorov “18O abundance and dissolved silicate in the Lena delta and Laptev Sea (Russia),” Mar. Chem. 43, 47–64 (1993).

    Google Scholar 

  37. J. Lynch-Stieglitz, T. F. Stocker, W. Broecker, and R. G. Fairbanks, “The influence of air–sea exchange on the isotopic composition of oceanic carbon: observation and modeling,” Global Biochem. Cycles 9 (4), 653–665 (1995).

    Google Scholar 

  38. P. N. Makkaveev, A. A. Polukhin, A. M. Seliverstova, S. V. Stepanova, A. L. Chultsova and V. A. Artemiev, “Dissolved inorganic carbon in the estuarine area of the Lena River: results of expeditions in 2015 and 2017,” Oceanology 58 (4), 525–536 (2018).

    Google Scholar 

  39. S. Moreau M. Vancoppenolle, L. Bopp, O. Aumont, G.Madec, B. Delille, J.-L. Tison, P.-Y. Barriat, and H. Goosse, “Assessment of the sea–ice carbon pump: Insights from a three-dimensional ocean–sea–ice biogeochemical model (NEMO–LIM–PISCES),” Elem. Sci. Anth. 4 (2016). https://doi.org/10.12952/journal.elementa.000122

  40. T. Mueller-Lupp, H. Erlenkeuser, and H. A. Bauch, “Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves,” Boreas 32 (2), 292–303 (2003).

    Google Scholar 

  41. A. S. Naidu, L. W. Cooper, B. P. Finney, R. W. MacDonald, C. Alexander, and I. P. Semiletov, “Organic carbon isotope ratios [δ13C] of Arctic Amerasian continental shelf sediments,” J. Earth Sci. 89, 522–532 (2000).

    Google Scholar 

  42. J. D. Ortiz, A. C. Mix, P. A. Wheeler, and R. M. Key, “Anthropogenic CO2 invasion into the northeast Pacific based on concurrent δ13C(DIC) and nutrient profiles from the California current,” Global Biochem. Cycles 14 (3), 917–929 (2000).

    Google Scholar 

  43. H. G. Ostlund and G. Hut, “Arctic Ocean water mass balance from isotope data,” J. Geophys. Res. 89, 6373–6381 (1984).

    Google Scholar 

  44. O. S. Pokrovsky, R. M. Manasypov, S. Loiko, L. S. Shirokova, et al., “Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers,” Biogeosciences 12, 6301–6320 (2015).

    Google Scholar 

  45. A. C. Redfield and I. Friedman, “The effect of meteoric water, melt water and brine on the composition of polar sea water and of the deep waters of the ocean,” Deep–Sea Res. 16, 197–214 (1969).

    Google Scholar 

  46. S. Rysgaard, R. N. Glud, M. K. Sejr, J. Bendtsen, and P. B. Christensen, “Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas,” J. Geophys. Res. 112, C03016 (2007).

    Google Scholar 

  47. S. Saumik, T. K. Dalai, J. K. Pattanaik, S. K. Rai, and A. Mazumdar, “Dissolved inorganic carbon (DIC) and its d13C in the Ganga (Hooghly) River estuary, India: evidence of DIC generation via organic carbon degradation and carbonate dissolution,” Geochim. Cosmochim. Acta 165, 226–248 (2015).

    Google Scholar 

  48. P. Schlosser, D. Bauch, R. Fairbanks, and G. Bonisch, “Arctic river–runoff: mean residence time on the shelves and in the halocline,” Deep–Sea Res. 41(7), 1053–1068 (1994).

    Google Scholar 

  49. A. Schmittner, N. Gruber, A. C. Mix, R. M. Key, A. Tagliabue, and T. K. Westberry, “Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean,” Biogeosciences 10, 5793–5816 (2013).

    Google Scholar 

  50. I. Semiletov, O. Dudarev, V. Luchin, A. Charkin, K.‑H. Shin, and N. Tanaka, “The East Siberian Sea as a transition zone between Pacific–derived waters and Arctic shelf waters,” Geophys. Res. Lett. 32, L10614 (2005).

    Google Scholar 

  51. A. Tagliabue and L. Bopp, “Towards understanding global variability in ocean carbon-13,” Global Biochem. Cycles 22, GB1025 (2008).

  52. A. M. Waite, O. Gustafsson, and P. Tiselius, “Linking ecosystem dynamics and biogeochemistry: sinking fractionation of organic carbon in a Swedish fjord,” Limnol. Oceanogr. 50 (2), 658–671 (2005).

    Google Scholar 

  53. M. Wakatsuchi and N. Ono “Measurements of salinity and volume of brine excluded from growing sea ice,” J. Geophys. Res. 88, 2943–2951 (1983).

    Google Scholar 

  54. J. J. Walsh, et al., “Carbon and nitrogen cycling within the Bering/Chukchi seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean,” Prog. Oceanogr. 22, 277–359 (1989).

    Google Scholar 

  55. B. S. Zalogin and A. N. Kosarev, Seas (Moscow, 1999) [in Russian].

  56. J. Zhang, P. Quay, and D. Wilbur, “Carbon isotope fractionation during gas–water exchange and dissolution of CO2,” Geochim. Cosmochim. Acta 59, 107–114 (1995).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the head of the Cruise 69th of R/V Akademik Mstislav Keldysh, Academician M.V. Flint and the crew of the research vessel, who provided sampling of materials using in this work.

P.N. Makkaveev and B.G. Pokrovsky are thanked for comments that significantly improved the manuscript.

Funding

The work was supported by the Russian Science Foundation (project no. 18-17-00089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Dubinina.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinina, E.O., Kossova, S.A., Miroshnikov, A.Y. et al. Dissolved Inorganic Carbon ([DIC], δ13С(DIC)) in Waters of the Eastern East Siberian Sea. Geochem. Int. 58, 867–886 (2020). https://doi.org/10.1134/S0016702920080054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920080054

Keywords:

Navigation