Skip to main content

Study of Reflectance Spectra of Micrometeorites with Porous Structure from the Novaya Zemlya Ice Sheet

Abstract

The results of electron-probe and spectrophotometric study of five porous micrometeorites found on the Novaya Zemlya glacier are presented. Their reflectance spectra are compared with those of terrestrial serpentines and several carbonaceous chondrites. The possibility of discovery and identification of mineralogical absorption bands in the reflectance spectra of micrometeorite particles is demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    J. B. Adams, “Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock forming minerals,” Infrared and Raman Spectroscopy of Lunar and Terrestrial Materials, Ed. by C. Karr (Academic, San Diego, 1975), pp. 91–116.

    Google Scholar 

  2. 2

    A. I. Bakhtin, Rock–forming Silicates: Optical Spectra, Crystal Chemistry, Coloration Trends, and Typomorphism (Kazan Gos. Unib., Kazan, 1985) [in Russian].

    Google Scholar 

  3. 3

    J. P. Bradley, “Interplanetary dust particles,” Treatise on Geochemistry, Ed. by A.M. Davis (Elsevier, 2003), vol. 3, 689–711.

    Google Scholar 

  4. 4

    J. P. Bradley, L. P. Keller, D. E. Brownlee, and K. L. Thomas, “Reflectance spectroscopy of interplanetary dust particles,” Meteorit. Planet. Sci. 31, 394–402 (1996).

    Article  Google Scholar 

  5. 5

    R. G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge Univ. Press, New York, 1993).

    Book  Google Scholar 

  6. 6

    V. V. Busarev and M. N. Taran, “On the spectral similarity of carbonaceous chondrites and some hydrated and oxidized asteroids, Proc. of Asteroids, Comets, Meteors (ACM 2002) Technical Univ. of Berlin (ESA-SP-500), (Berlin, 2002), pp. 933–936.

  7. 7

    V. V. Busarev, S. I. Barabanov, V. S. Rusakov, V. B. Puzin, and V. V. Kravtsov, “Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples,” Icarus, 262, 44–57 (2015).

    Article  Google Scholar 

  8. 8

    C. Fernandes, “Spectral studies of extra–terrestrial materials,” PhD Thesis (The Open University 2013).

  9. 9

    M. J. Genge, C. Engrand, M. Gounelle, and S. Taylor, “The classification of micrometeorites,” Meteorit. Planet. Sci. 43 (3), 497–515 (2008).

    Article  Google Scholar 

  10. 10

    R. M. Hazen, H. K. Mao, and P. M. Bell, Proc. Lunar Planet. Sci. Conf. 8, 1081–1090 (1977).

    Google Scholar 

  11. 11

    R. M. Hazen, P. M. Bell, and H. K. Mao “Effects of composition variation on absorption spectra of lunar pyroxenes,” Proc. of the Ninth Lunar Planet. Sci. Conf. 3, 2919–2934 (1978).

  12. 12

    D. A. Hickson, Boivin, M. G. Daly, et al., “Near surface bulk density estimates of NEAs from radar observations and permittivity measurements of powdered geologic material,” Icarus 306, 16–24 (2018).

    Article  Google Scholar 

  13. 13

    T. Hiroi, F. Vilas, and J. M. Sunshine, “Discovery and analysis of minor absorption bands in S–asteroid visible reflectance spectra,” Icarus 119, 202–208 (1996).

    Article  Google Scholar 

  14. 14

    A. Manceau, G. Calas, and A. Decarreau, “Nickel–bearing clay minerals: I. Optical spectroscopic study of nickel crystal chemistry,” Clay Minerals 20, 367–387 (1985).

    Article  Google Scholar 

  15. 15

    R. Maupin, Z. Djouadi, and R. Brunetto, “Vis-NIR reflectance micro–spectroscopy of interplanetary dust particles,” 50th Lunar Planet. Sci. Conf. Lunar Planet. Inst., Contrib. No. 2132, (2019).

  16. 16

    L. A. McFadden, M. J. Gaffey, H. Takeda, T. L. Jackowski, and K. L. Reed, “Reflectance spectroscopy of diogenite meteorite types from Antarctica and their relationship to asteroids,” Mem. Natl. Inst. Polar Res., Spec. Iss. 25, 188–206 (1982).

    Google Scholar 

  17. 17

    J. M. C. Plane, “Cosmic dust in the earth’s atmosphere,” Chem. Soc. Rev. 41, 6507–6518 (2012).

    Article  Google Scholar 

  18. 18

    A. N. Platonov, Nature of Mineral Color (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  19. 19

    P. Vernazza, M. Marsset, P. Beck, et al., “Interplanetary dust particles as samples of icy asteroids,” Astrophys. J. 806, 204–213 (2015).

    Article  Google Scholar 

  20. 20

    E. A. Cloutis, “Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions,” J. Geophys. Res. 107, No. E6, 5039 (2002). https://doi.org/10.1029/2001JE001590

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.R. Khisina, whose comments helped to significantly improve the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. V. Busarev or D. D. Badyukov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Busarev, V.V., Badyukov, D.D. & Pronina, N.V. Study of Reflectance Spectra of Micrometeorites with Porous Structure from the Novaya Zemlya Ice Sheet. Geochem. Int. 58, 795–801 (2020). https://doi.org/10.1134/S0016702920070058

Download citation

Keywords:

  • micrometeorites
  • electron-probe data
  • reflectance spectra
  • asteroids and comets