Skip to main content
Log in

Rare Metal Distribution and Mineralization Potentiality of Pegmatites in Gabal El Fereyid Granite, South Eastern Desert, Egypt

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Gabal El Fereyid area, represents a promising area for monzogranite and pegmatites hosted rare-metal mineralization. Microscopically, monzogranite and pegmatites consist of K-feldspar, albite, and quartz with few biotite +/– hornblende. The radiometric studies of anomalous pegmatite samples show that their eU-contents reached up to 149 ppm while their eTh-contents reached up to 375 ppm, in contrast the eU and eTh contents of monzogranite range from 1 to 5.7 ppm and from 4.2 to 29.1 ppm, respectively. This indicates strong post-magmatic U-enrichment in the pegmatitic melt, due to the presence of radioactive minerals as thorite, uranothorite, fergusonite, samarskite and ishikawit. U and Th mineralization in pegmatites are discriminated as hydrothermal and magmatic types. Pegmatites show enrichment of large ion lithophile elements (LILE; Pb and Rb,), high field strength elements (HFSE; Y, Zr, Th, U, Nb and Ta) and rare earth elements but depleted in K, P, Sr, Cs, Ba and Ti. Pegmatites indicate moderate to large negative Eu anomaly and show clear W-type tetrad effect of the REE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. H. H. Abd El Naby and G. M. Saleh, “Radioelement distribution in the proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt,” Appl. Radiation Isotopes 59, 289–299 (2003).

    Google Scholar 

  2. A. M. Abdel Karim and E. A. Sos, “Geochemical characteristics and potassium argon ages dating of some granitoids from South Eastern Desert, Egypt,” J. Geol. Soc. Egypt, Cairo. 44, 305–318 (2000).

  3. M. K. Akaad and A. M. Nowier, “Geology and litho–stratigraphy of the Arabian Desert orogenic belt of Egypt between lat. 25°35′ and 25°30′,” 1st Appl. Geol Jeddah, Bull. 4, 127–134 (1980).

    Google Scholar 

  4. B. A. Ali, “Geochemistry of U–Th–REE bearing minerals, in radioactive pegmatite in Um Swassi–Dara area, north eastern desert, Egypt,” Jordan Atomic Energy Comm. 1, 197–209 (2007).

    Google Scholar 

  5. M. A. Ali, “Geology, petrology and radioactivity of Gabal El-Sibai area, Central Eastern Desert, Egypt,” Ph.D Thesis (Cairo University, 2001).

  6. A. M. H. Asran, M. M. El Mansi, M. E. Ibrahim, and I. M. Abdel Ghani, “Pegmatites of Gabal El Urf, Central Eastern Desert, Egypt,” The Seventh International Conference of the Geology of Africa (Assuit, 2013), P‑P IV-1–V-22.

  7. M. Bau, “Controls on the fractionation of isovalent trace elements in magmatic and aqueous system; evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect,” Contrib. Mineral. Petrol. 123, 323–333 (1996).

    Google Scholar 

  8. M. Beyth, R. J. Stern, R. Altherr, and A. Kröner, “The late Precambrian Timna igneous complex, southern Israel: evidence for comagmatic–type sanukitoid monzodiorite and alkali granite magma,” Lithos 31, 103–124 (1994).

    Google Scholar 

  9. R. W. Boyle, Geochemical Prospecting for Thorium and Uranium Deposits (Elsevier Publ. Co., Amsterdam, 1982).

    Google Scholar 

  10. W. V. Boynton, “Geochemistry of the rare earth elements: meteorite studies,” Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  11. V. Caironi, A. Colombo, A. Tunesi, and C. Gritti, “Chemical variations of zircon compared with morphological evolution during magmatic crystallization: an example from the Valle del Cervo Pluton (Western Alps),” Eur. J. Mineral. 12, 779–794 (2000).

    Google Scholar 

  12. A. R. Cambon, “Uranium deposits in granitic rocks,” Notes on the National Training course on Uranium Geology and Exploration (IAEA and NMA, 1994), pp. 8–20.

    Google Scholar 

  13. China National Nuclear Corporation. Research Archievement from Bureau of Geology. Internal Report (CNNC, 1993).

  14. P. Černý, “Distribution, affiliation and derivation of rare–element granite pegmatites in Canadian Shield,” Geol. Rundsch. 79, 183–226 (1990).

  15. P. Černý, “Rare–element granitic pegmatites. 1. Anatomy and internal evolution of pegmatite deposits,” Geosci. Canada 18, 49–67 (1991).

    Google Scholar 

  16. P. Černý and T. S Ercit, “The classification of granitic pegmatites revisited,” Can. Mineral. 43, 2005–2026 (2005).

    Google Scholar 

  17. P. Černý, B. E Goad, F. C Hawthorne, and R. Chapman, “Fractionation trends of the Nb and Ta–bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole,” southeastern Manitoba,” Am. Mineral. 71, 501–517 (1986).

    Google Scholar 

  18. P. Černý, D. London, and M. Novak, “Granitic pegmatites as reflections of their sources,” Elements 8, 289–294 (2012).

    Google Scholar 

  19. P. Černý and D. M. Burt, “Paragenesis, and geochemical evolution of micas in granitic pegmatites,” Rev. Mineral. Micas, Ed. by S. W. Bailey, Rev. Mineral. Mineral. Soc. Am. 13, 257–297 (1984).

  20. S. P. Clark, Z. E. Petrman, and K. S. Heier, “Abundance of uranium, thorium and potassium,” In: (Editor), Handbook of Physical Constraints, Ed. by S. P. Clark, Jr., Geol. Soc. Am. Mem. 97, Section 24, 521–541 (1966).

  21. R. L. Cullers and l. Graf, “Rare Earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks are petrogenesis,” Rare Earth Elements Geochemistry, Ed. by P. Henderson (Elsevier Pub. Co., Amsterdam, 1984), vol. 2, pp. 275–316.

    Google Scholar 

  22. A. G. Darenely and K. L. Ford, “Regional airborne gamma–ray survey: a review,” Proc.3rd Inter. Conf. Geophys. Geochem. Expl. for Minerals and Ground Water, Ontario, Geol. Surv. Spec., 3, 229–240 (1989).

  23. M. A. El Amawy, “Structure and tectonic development of Wadi Beitan, Wadi Rahaba area, South Eastern Desert, Egypt,” 9th Symp Precambrian Develop, Nat Comitt Geol Sci. (Cairo, 1991), p. 9.

  24. M. H. El Baraga, “Geolgical, mineralogical and geochemical studies of the Precamrian rocks around Wadi Rahaba, South Eastern Desert, Egypt,” PhD (Geol. Fac Sci, Tanta Univ., 1992).

  25. M. A. F. M. El Eraqi, “Geophysical study on the area between Latitudes 23.00–25° N and Longitudes 33.30–35.30° E, Southeastern Desert, Egypt,” PhD (Geophy, Fac Sci, Zagazig Univ., 1992).

  26. S. El Gaby, F. K. List, and R. Tehrani, “The basement complex of the Eastern Desert and Sinai,” The Geology of Egypt, Ed. by R. Said, (Balkema–Bookfield, Rotterdam, 1990), pp. 175–184.

    Google Scholar 

  27. S. El Gaby, F. K. List, and R. Taharani, “Geology, evolution and metallogenesis of the Pan–African belt in Egypt,” The Pan–African Belt of Northeast Africa and Adjacent Areas. Tectonic Evolution and Economic Aspects of the Late Proterozoic Orogen, Ed. by S. El Gaby and R.O. Greiling, (Fried. Niewing and Sohn, Brausschweig, Viesbaden, 1988), pp. 17–68.

  28. M. M. El Sayed, “Tectonic setting and petrogenesis of the Kadabora pluton: a late Proterozoic anorogenic A-type younger granitoid in the Egyptian Shield,” Chem. Erde 58, 38–63 (1998).

    Google Scholar 

  29. T. S. Ercit, “Identification and alteration trends of granitic–pegmatite–hosted (Y, REE, U, Th)–(Nb, Ta, Ti) oxide minerals: a statistical approach,” Can. Mineral. 43, 1291–1303 (2005).

    Google Scholar 

  30. A. J. Erlank, H. S. Smith, J. W. Marchant, M. P. Cardoso, and L. H. Ahrens, “Hafnium,” Handbook of Geochemistry, Ed. by K. H. Wedepohl, (Springer–Verlag, Berlin—Heidelberg—New York, 1978), pp. 72C1–72O1.

  31. H. Ervanne, “Uranium oxidation states in allanite, fergusonite and monazite of pegmatites from Finland,” Neues Jahrb. Mineral. Monatsh. 7, 289–301 (2004).

    Google Scholar 

  32. G. Faüre, “The U, Th–Pb methods of dating,” Principles of Isotope Geology, 2nd Ed. (John Wiley & Sons, 1096), pp. 228–308.

  33. H. Furnes, M. M. El-Sayed, S. O. Khalil, and M. A. Hassanen, “Pan-African magmatism in the Wadi El Imra district, Central Eastern Desert, Egypt,” Geochemistry and Tectonic Environment, J. Geol. Soc. London 153, 705–718 (1996).

    Google Scholar 

  34. V. V. Gordiyenko, “Concentrations of Li, Rb, and Cs in potash feldspar and muscovite as criteria for assessing the rare–metal mineralization in granite pegmatites,” Int. Geol. Rev. 13, 134–142 (1971).

    Google Scholar 

  35. T. H. Green, “Significance of Nb–Ta as an indicator of geochemical processes in the crust–mantle system,” Chem. Geol. 120, 347–359 (1995).

    Google Scholar 

  36. S. L. Hanson, W. B. Simmons, A. U. Faister, E. E. Foord, and F. E. Lichte, “Proposed nomenclature for samarskite–group minerals, new data ishikawaite and calciosamaskite,” Mineral. Mag. 63, 27–36 (1999).

    Google Scholar 

  37. M. A. Hassan and A. H. Hashad, “Precambrian of Egypt,” The Geology of Egypt, Ed. by R. Said (Balkema, Rotterdam, 1990), pp. 201–245.

    Google Scholar 

  38. A. G. Hermann, “Yttrium and lanthanides,” Handbook of Geochemistry, Ed. by K. H. Wedepohl (Sprin, New York, (1970), pp. 39–57.

    Google Scholar 

  39. A. W. Hofmann, K. P. Jochum, M. Seufert, and W. M. White, “Nb and Pb in oceanic basalts: new constraints on mantle evolution,” Earth Planet. Sci. Lett. 79, 33–45 (1986).

    Google Scholar 

  40. A. A. A. Hussein, M. M. Ali, and M. F. El Ramly, “A proposed new classification of the granites of Egypt,” J. Volcanol. Geotherm. Res. 14, 187–198 (1982).

    Google Scholar 

  41. M. E. Ibrahim, G. M. Saleh, and H. H. Abd El-Naby, ““Uranium mineralization in the two mica granite of Gabal Ribdab, South Eastern Desert, Egypt,” Appl. Radiat. Isot. 55 (6), 123–134 (2001).

    Google Scholar 

  42. M. E. Ibrahim, M. H. Shalaby, and S. E. Ammar, “Preliminary studies on some uranium and thorium bearing pegmatites at G. Abu Dob, Central Eastern Desert, Egypt,” Proc. Egypt. Acad. Sci. 47, 173–188 (1997).

    Google Scholar 

  43. W. Irber, “The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites,” Geochim. Cosmochim. Acta, 63 (3), 489–508 (1999).

    Google Scholar 

  44. W. Irber, H. J. Forster, L. Hech, P. Moller, and G. Mortteani, “Experimental, geochemical, mineralogical and oxygen isotope constrain in the late magmatic history of the Fichtelgebirge granites (Germany),”Geol. Rdesch. 86, 110–124 (1997).

    Google Scholar 

  45. A. O. Kalashnikov, N. G. Konopleva, Ya. A. Pakhomovsky, and G. Yu. Ivanyuk, “Rare earth deposits of the Murmansk Region, Russia: a review,” Econ. Geol. 111, 1529–1559 (2016).

    Google Scholar 

  46. N. M. Kudryashov, A. V. Voloshin and O. V. Udoratina, “High-Hf zircon from rare-metal pegmatites from the Vasin-Mylk deposit (Kola region, Russia),” CAM–2017 (Conference on Accessory Minerals) (Vienna—Bratislava, 2017).

  47. G. R. Lumpkin, “Rare-element mineralogy and internal evolution of the Rutherford pegmatite, Amelia County, Virginia: a classic locality revisited,” Can. Mineral. 36, 339–353 (1998).

    Google Scholar 

  48. A. Masuda, O. Kawakami, Y. Dohmoto, and T. Takenaka, “Lanthanide tetrad effects in nature: two mutually opposite types, W and M,” J. Geochem. J. 21, 119–124 (1987).

    Google Scholar 

  49. K. R. Mehnert and W. Busch, “The Ba content of K–feldspar megacrysts in granites,” N. Jahrb. Mineral. Abh. 140, 221–252 (1981).

    Google Scholar 

  50. A. M. Moghazi, “Magma source and evolution of late Neoproterozoic granitoids in the Gabal El Urf area, Eastern Desert, Egypt: geochemical and Sr-Nd isotopic constrains,” Geol. Mag. 136, 285–300 (1999).

    Google Scholar 

  51. F. H. Mohamed, M. A. Hassanen, and M. H. Shalaby, “Geochemistry of Wadi Hawashia granite complex, Northern Egyptian Shield,” J. Afr. Earth Sci. 19, 61–74 (1994).

    Google Scholar 

  52. V. M. Makagon, “Evolution of Nb, Ta-oxide mineralization in rare–metal pegmatites of the East Sayan belt, Siberia, Russia,” Granitic Pegmatites: The State of the Art—International Symposium (Porto, 2017).

  53. L. M. Nossair, “Structural and radiometric studies of Gebel Gharib area, north Eastern Desert, Egypt,” Ph.D. Thesis (Fac. Sci., Alex. Univ., 1987).

  54. A. M. Noweir, B. M. Sewifi, and A. M. Abu EI Ela, “Geology, petrography, geochemistry and petrogenesis of the Egyptian younger granites,” Qatar Univ. Sci. Bull. 10, 363–393 (1990).

    Google Scholar 

  55. S. A. Omar, “Geological and geochemical features of the radioactive occurrences south G. Um Anab granitic masses, Eastern Desert, Egypt, ” M.Sc. Thesis, (Cairo University, 1995).

  56. M. R. Owen, “Hafnium content of detrital zircons, a new tool for provenance study,” J. Sediment. Petrol. 57, 824–830 (1987).

    Google Scholar 

  57. L. R. Page, “Uranium in pegmatites,” Econ. Geol. 45, 12–34 (1950).

    Google Scholar 

  58. M. F. Raslan, H. E. El Shall, S. A. Omar, and A. M. Daher, “Mineralogy of polymetallic mineralized pegmatite of Ras Baroud Granite, Central Eastern Desert, Egypt,” J. Mineral. Petrol. Sci. 105 (3), 123–134 (2010).

    Google Scholar 

  59. G. Reto, W. Terry, W. Richard, and R. Katja, “Metamict fergusonite-(Y) in a spessartine–bearing granitic pegmatite from Adamello, Italy,” Chem. Geol. 261, 333–345 (2009).

    Google Scholar 

  60. J. J. W. Rogers and J. A. S Adams, “Uranium and thorium,” Handbook of Geochemistry, Ed. by K. H. Wedepohl, (Springer Verlag, New York, 1996), Vol. 4, p. 92-B-1—92-C-10.

  61. R. L. Rudnick and S. Gao, “Composition of the Continental Crust,” Treatise on Geochemistry (Elsevier, 2003), Vol. 3, pp. 1–64.

    Google Scholar 

  62. T. A. Sayyah, H. S. Assaf, Z. M. Abdel Kader, M. A. Mahdy, and S. A. Omar, “New Nb–Ta occurrence in Gebel Ras baroud, Central Eastern Desert, Egypt,” Egypt. Mineral. 5, 41–55 (1993).

    Google Scholar 

  63. M. H. Shalaby, “Geology and radioactivity of W. Dara area, North Eastern Desert, Egypt,” Ph. D. Thesis, (Fac. Sci., Alex. Univ., 1985).

  64. W. B. Simmons, S. L. Hanson, and A. U. Falster, “Samarskite-(Yb) A new species of the samarskite group from the Litle Pasty pegmatite, Jefferson County, Colorado,” Can. Mineral. 44, 1119–1125 (2006).

    Google Scholar 

  65. G. M. Sosa, M. S. Augsburger, and J. S. Pedregosa, “Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina,” Europ. J. Mineral. 14, 627–636 (2004).

    Google Scholar 

  66. R. J. Stern and D. Gottfried, “Petrogenesis of a Late Precambrian (575–600 Ma) bimodal suite in northeast Africa,” Contrib. Mineral. Petrol. 92, 492–501 (1986).

    Google Scholar 

  67. J. S. Stuckless, C. M. Bunker, C. A. Bush, W. P. Doering, and J. I. I. Scott, “Geochemical and petrologic studies of a uraniferous granites of the Granite Mountains, Wyoming, U. S,” Geol. Surv. Jour. Res. 5, 61–81 (1984).

    Google Scholar 

  68. M. T. Sweetapple, “Characteristics of Sn–Ta–Be–Li–industrial mineral deposits of the Archaean Pilbara Craton, Western Australia, Canberra,” Austral. Geol. Surv. Org. (AGSO) Record 44, (2000).

  69. R. Thomas and J. D. Webster, “Characteristics of berlinite from the Ehrenfriedersdorf pegmatite, Erzgebirge, Germany,” Eur. J. Mineral. 281, 124–136 (2000).

    Google Scholar 

  70. D. L. Trueman and P. Cerny, “Exploration for rare element granitic pegmatites in science and industry: Mineralogical Association of Canada,” Short Course Handbook 8, 463–493 (1982).

    Google Scholar 

  71. P. Uher and P. Černý, “Zircon in hercynian granitic pegmatites of the western Carpathians, Slovakia,” Geol. Carpathica 49, 261–270 (1998).

    Google Scholar 

  72. R. J. Walker, “The origin of the Tin Mountain pegmatite, Black Hills, South Dakota,” Unpubl. Ph.D.thesis (State University of New York, 1984).

  73. X. Wang, W. L. Griffin, and J. Chen, “Hf Contents and Zr/Hf ratios in granitic zircons,” Geochem. J. 44, 65–72 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Bahaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaa, M.E., Gehad, M.S., Maher, I.D. et al. Rare Metal Distribution and Mineralization Potentiality of Pegmatites in Gabal El Fereyid Granite, South Eastern Desert, Egypt. Geochem. Int. 58, 802–821 (2020). https://doi.org/10.1134/S0016702920070034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920070034

Keywords:

Navigation