Skip to main content
Log in

Monitoring of Spatiotemporal Variations in the Production Rates of Cosmogenic Radionuclides in Chondrites of Different Orbits Falling to Earth

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents data obtained on the production rates of cosmogenic radionuclides of different half-life in 42 chondrites that fell in 1959–2016. A quantitative approach is developed for using cosmogenic radionuclides as natural detectors of galactic cosmic rays (GCR) for different time periods and for different heliocentric distances. A long set of homogeneous data is compiled on 54Mn, 22Na, and 26Al production rates along meteorite orbits (at 2–4 AU) in 1959–2016. Its correlative analysis with the corresponding sets of data on some major parameters of magneto hydrodynamic processes in the heliosphere allows us to identify principal relationships and trends in the temporal and spatial variations in GCR (E > 100 MeV) in the inner heliosphere (≤5 AU) over a long time scale. The monitoring of this analysis makes it possible both to study these processes in the past and to predict their characteristics in the future, which still cannot be done by means of direct measurements of the GCR intensity in interplanetary space. A project is suggested to demonstrate the expedience of establishing an international meteorite-patrol survey to study spatiotemporal variations in GCR in the inner heliosphere by means of measuring and analyzing the production rates of cosmogenic radionuclides in chondrites falling to Earth. No alternative projects have been put forth as of yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. V. Alania, L. I. Dorman, A. K. Lavrukhina, and G. K. Ustinova, “GCR variations in the heliosphere according to radioactivity of meteorites,” Proc. 18thIntern. Cosmic-Ray Conf., Bangalore10, 42–45 (1983).

  2. V. A. Alexeev, “Meteorite ablation evaluated from data on the distribution of cosmogenic neon isotopes,” Solar Syst. Res. 37 (3), 207–217 (2003).

    Article  Google Scholar 

  3. V. A. Alexeev and G. K. Ustinova, “Solar modulation of galactic cosmic rays in the three-dimensional heliosphere according to meteorite data, Geochem. Int. 44 (5), 423–438 (2006).

    Article  Google Scholar 

  4. V. A. Alexeev, V. D. Gorin, A. I. Ivliev, L. L. Kashkarov, and G. K. Ustinova, “Recently fallen Bukhara (CV3) and Kilabo (LL6) chondrites: a parallel study of luminescence, tracks, and cosmogenic radionuclides,” Geochem. Int. 46(9), 849–866 (2008).

    Article  Google Scholar 

  5. V. A. Alexeev, M. Laubenshtein, P. P. Povinec, and G. K. Ustinova, “Cosmogenic radionuclides in Chelyabinsk and Kosice chondrites and peculiarities of 23 and 24 solar cycles,” Izv. Ross. Akad. Nauk. Ser. Fiz. 79 (5), 650–653 (2015).

    Google Scholar 

  6. V. A. Alexeev, M. Laubenstein, P. P. Povinec, and G. K. Ustinova, “Variations of cosmogenic radionuclide production rates along the meteorite orbits,” Adv. Space Res. 56, 766–771 (2015).

    Article  Google Scholar 

  7. V. A. Alexeev, M. Laubenstein, P. P. Povinec and G. K. Ustinova, “Cosmogenic radionuclides in meteorites and solar modulation of galactic cosmic rays in internal heliosphere,” Solar Syst, Res. 52 (2), 98–115 (2019).

    Article  Google Scholar 

  8. G. A. Bazilevskaya and A. K. Svirzhevskaya, “On the stratospheric measurements of cosmic rays,” Space Sci. Rev. 85, 431–521 (1998).

    Article  Google Scholar 

  9. G. A. Bazilevskaya, M. S. Kalinin, M. B. Krainev, V. S. Makhmutov, A. K. Svirzhevskaya, and N. S. Svirzhevsky, “Temporal and energy behavior of cosmic ray fluxes in the periods of low solar activity,” Proc. 33rdIntern. Cosm. Ray Conf, Rio de Janeiro. 2013. The Astroparticle Phys. Conf. arXiv:1411.7534. 2014.1 (2014).

  10. A. V. Belov, E. A. Eroshenko, B. Heber, V. G. Yanke, A. Raviart, R. Mueller-Mellin, H. Kunow, K. Roehrs, G. Wibberenz, and C. Paizis, “Latitudinal and radial variation of >2 GeV/n protons and α-particles in the southern heliosphere at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations,” Proc. 27th Intern. Cosmic-Ray Conf., Hamburg 10, 3996–3999 (2001).

  11. N. Bhandari, D. Lal, R. S. Rajan, J. R. Arnold, K. Marti, and C. B. Moore, “Atmospheric ablation in meteorites: a study based on cosmic ray tracks and neon isotopes,” Nucl. Tracks 4 (4), 213–262 (1980).

    Article  Google Scholar 

  12. N. Bhandari, G. Bonino, G. Cini Castagnoli, and C. Taricco, “The 11-year solar cycle variation of cosmogenic isotope production rates in chondrites,” Meteoritics 29, 443–444 (1994).

    Google Scholar 

  13. S. K. Bhattacharya, J. N. Goswami, and D. Lal, “Semiempirical rates of formation of cosmic ray tracks in spherical objects exposed in space: pre' and post' atmospheric depth profiles,” J. Geophys. Res. 78 (34), 8356–8363 (1973).

    Article  Google Scholar 

  14. L. F. Burlaga, “Understanding the heliosphere and its energetic particles,” Proc. 18thIntern. Cosmic-Ray Conf. Bangalore12, 21–60 (1983).

  15. L. F. Burlaga and N. F. Ness, “Magnetic field strength distributions and spectra in the heliosphere and their significance for cosmic ray modulation: Voyager 1, 1980–1994,” J. Geophys. Res. 103, 29719–29732 (1998).

    Article  Google Scholar 

  16. P. Eberhardt, J. Geiss, and H. Lutz, “Neutrons in meteorites,“ Earth Science and Meteoritics. (North-Holland, Amsterdam, 1963), pp. 143–168.

    Google Scholar 

  17. I. C. Evans, I. H. Reeves, L. A. Rancitelli, and D. D. Bogard, “Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967–1978,” J. Geophys. Res. 87, 5577–5591 (1982).

    Article  Google Scholar 

  18. E. L. Fireman, “Radioactivities in meteorites and cosmic-ray variations,” Geochim. Cosmochim. Acta 31, 1691–1700 (1967).

    Article  Google Scholar 

  19. Th. Graf, H. Baur, and P. Signer, “A model for the production of cosmogenic nuclides in chondrites,” Geochim. Cosmochim. Acta 54 (9), 2521–2534 (1990).

    Article  Google Scholar 

  20. V. N. Ishkov, “Properties and surprises of solar activity XXIII Cycle,” Sun Geosphere 5 (2), 43–46 (2010).

    Google Scholar 

  21. E. Jarosewich, “Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses,” Meteoritics 25, 323–337 (1990).

    Article  Google Scholar 

  22. D. Lal, “Hard rock cosmic-ray archaeology,” Space Sci. Rev. 14, 3–102 (1972).

    Article  Google Scholar 

  23. L. D. Landau, and E. M. Livshits, Mechanics (Nauka, Moscow, 1988), pp. 51–57 [in Russian].

    Google Scholar 

  24. A. K. Lavrukhina and G. K. Ustinova, “Solar proton medium flux constancy over a million years,” Nature 232, 462–463 (1971).

    Article  Google Scholar 

  25. A. K. Lavrukhina and G. K. Ustinova, “Cosmogenic radionuclides in stones and meteorite orbits,” Earth Planet. Sci. Lett. 15 (4) 347–360 (1972).

    Article  Google Scholar 

  26. A. K. Lavrukhina and G. K. Ustinova, “Galactic cosmic-ray gradients in the ecliptic plane and at high latitudes during two solar cycles (meteorite data),” Adv. Space Res. 1, 143–146 (1981).

    Article  Google Scholar 

  27. A. K. Lavrukhina, and G. K. Ustinova, Meteorites as Probes of Cosmic Ray Variations (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  28. A. K. Lavrukhina, G. K. Ustinova, T. A. Ibraev, and R. I. Kuznetsova, “Cosmic-radiation-induced radioactivity of the Moon and meteorites, and origin of meteorites,” Meteorite Research. (D. Reidel, D. Dordrecht, 1969), pp. 227–245.

  29. A. K. Lavrukhina, G. K. Ustinova, V. V. Malyshev, and L. M. Satarova, Modeling nuclear reactions in isotropically irradiated thick target,” Atomnaya Energiya 34 (1), 23–28 (1973).

    Google Scholar 

  30. A. K. Lavrukhina, P. Povinec, and G. K. Ustinova, “Cosmogenic 22Na and 26Al in samples of lunar regolith from “Luna-24” drill core,” Kosmik. Issled. 22 (1), 110–119 (1984).

    Google Scholar 

  31. R. B. McKibben, J. J. O’Gallagher, K. R. Pyle, and J. A. Simpson, “Cosmic ray intensity gradients in the outer solar system measured by Pioneer 10 and 11,” Proc.15th ICRC, Plovdiv 3, 240–245 (1977).

  32. R. B. McKibben, J. J. Connell, C. Lopate, M. Zhang, J. D. Anglin, A. Balogh, S. Dalla, T. R. Sanderson, R. G. Marsden, M. Y. Hofer, H. Kunow, A. Posner, and B. Heber, “Ulysses COSPIN observations of cosmic rays and solar energetic particles from the South Pole to the North Pole of the Sun during solar maximum,” Ann. Geophys. 21, 1217–1228 (2003).

    Article  Google Scholar 

  33. M. M. M. Meier, Meteorites with Photographic Orbits (2016). http://www.meteoriteorbits.info

  34. Leonty Miroshnichenko, Solar Cosmic Rays. Fundamentals and Applications (Springer, 2015).

  35. H. Moraal and P. H. Stoker, “Long-term neutron monitor observations and the 2009 cosmic ray maximum,” J. Geophys. Res. 115, A12109 (2010). https://doi.org/10.1029/2010JAO15413

    Article  Google Scholar 

  36. J. J. O’Gallagher and J. A. Simpson, “The heliocentric intensity gradient of cosmic ray protons and helium during minimum solar modulation,” Astrophys. J.147(2), 819–827 (1967).

    Article  Google Scholar 

  37. E. N. Parker, “Theoretical studies of the solar wind phenomenon,” Space Sci. Rev.9, 325–360 (1969).

    Google Scholar 

  38. E. N. Parker, Cosmic Magnetic Fields (Clarendon press, Oxford, 1979).

    Google Scholar 

  39. M. S. Potgieter, “Solar modulation of cosmic rays,” Living Rev. Solar Phys. 10, 3–66 (2013).

    Article  Google Scholar 

  40. P. Povinec, A. K. Lavrukhina, and G. K. Ustinova, “22Na and 26Al in Luna-24 samples. Proc.18thIntern. Cosmic-Ray Conf. (Bangalore, 1983), Vol. 2, 385–388.

  41. P. P. Povinec, “History of cosmic rays by cosmogenic radionuclides,” Proc. 20thIntern. Cosmic-Ray Conf. (IUPAP, Moscow, 1987), Vol. 7, 115–137 (1987).

  42. L. A. Rancitelli, J. S. Fruchter, W. D. Felix, R. W. Perkins, and N. A. Wogman, „Cosmogenic isotope production in Apollo deep-core samples,“ Proc. Lunar Sci. Conf. 6th. 2, 1891–1899 (1975).

  43. R. C. Reedy, J. R. Arnold, and D. Lal, “Cosmic-ray record in solar system matter,” Science 219, 127–135 (1983).

    Article  Google Scholar 

  44. S. Russell, J. Zipfel, L. Folco, R. Jones, M. M. Grady, T. McCoy, and J. N. Grossman, “The Meteoritical Bulletin, No. 87, 2003 July,” Meteoritics & Planet. Sci.38 (7), A189–A248 (2003).

    Article  Google Scholar 

  45. Yu. I. Stozhkov, N. S. Svirzhevsky, G. A. Bazilevskaya, A. N. Kvashnin, V. S. Makhmutov, and A. K. Svirzhevskaya, “Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere,” Adv. Space Res. 44(10), 1124–1137 (2009).

    Article  Google Scholar 

  46. I. G. Usoskin, L. Desorgher, P. Velinov, M. Storini, E. O. Flückiger, R. Bütikofer, and G. A. Kovaltsov, “Ionization of the Earth’s atmosphere by solar and galactic cosmic rays,” Acta Geophys. 57(1), 88–101 (2009).

    Article  Google Scholar 

  47. G. K. Ustinova, “Quasistationary asymmetryof the galactic cosmic ray density distribution in the heliosphere,” Proc. 18thIntern. Cosmic-Ray Conf., Bangalore10, 42–45 (1983).

  48. G. K. Ustinova, “Cosmic rays in the heliosphere and cosmogenic nuclides,” Nucl. Geophys. 9, 273–281 (1995).

    Google Scholar 

  49. G. K. Ustinova, “Patterns of cosmogenic radionuclide production rates in the heliosphere and problems of solar modulation on a long time scale,” Dokl. Phys. 61 (11), 571–576 (2016).

    Article  Google Scholar 

  50. G. K. Ustinova, “Solar proton effects in chondrites of low level ablation,” Exp. Geosci. 24 (1), 51–55 (2018).

    Google Scholar 

  51. G. K. Ustinova and V. A. Alexeev, “Meteorite patrol service for studying temporal and spatial variations of galactic cosmic rays in the internal heliosphere,” MAPS 53 (S1) 6056 (2018). (Presentation at The 81st Annual meeting of The Meteoritic Society. Moscow, 2018). Doi: https://doi.org/10.13140/RG.2.2.29814.70726

  52. G. K. Ustinova, and V. A. Alexeev, “Variations of cosmogenic radionuclide production rates in chondrites of known orbits,” Dokl. Phys, 64 (3), 139–143 (2019).

    Article  Google Scholar 

  53. G. K. Ustinova, and A. K. Lavrukhina, “Analytical expressions for distribution of cosmic radiation and radionuclides in meteorites.” Proc. 21st Intern. Cosmic-Ray Conf. (Adelaide, 1990), Vol. 7, 141–144 (1990).

  54. G. K. Ustinova, V. A. Alexeev, and A. K. Lavrukhina, “Evolution of meteoritic bodies in a cosmic space,” A Collection of Papers on Cosmochemistry (Naukova Dumka, Kiev, 1990), pp. 123–130.

    Google Scholar 

  55. G. K. Ustinova, V. A. Alexeev, and A. K. Lavrukhina, “Methods of determining sizes of meteorites before atmospheric entry,” Geochem. Int. 26 (5), 1–16 (1989).

    Google Scholar 

  56. D. Venkatesan, R. B. Decker, and S. M. Krimigis “Cosmic ray intensity gradients during 1984–1986,” Proc. 20th Intern. Cosmic-Ray Conf. (Moscow, 1987), Vol. 3, 385–388 (1987).

  57. Yu. I. Vitinsky, Solar Activity (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  58. Ya. B. Zel’dovich and Ruzmaikin, A. A. “Hydromagnetic dynamo as a source of planetary, solar, and galactic magnetism,” UFN 152 (2), 263–284 (1987).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank G.A. Bazilevskaya and her colleagues at the Laboratory of the Physics of the Sun and Cosmic Rays, Lebedev Physical Institute, Russian Academy of Sciences, for providing us with monthly results of balloon experiments aimed at measuring GCR intensities in the stratosphere.

Funding

This study was partly supported by Program 12 of Fundamental Studies under the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. K. Ustinova or V. A. Alexeev.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinova, G.K., Alexeev, V.A. Monitoring of Spatiotemporal Variations in the Production Rates of Cosmogenic Radionuclides in Chondrites of Different Orbits Falling to Earth. Geochem. Int. 58, 487–499 (2020). https://doi.org/10.1134/S0016702920050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920050110

Keywords:

Navigation