Skip to main content
Log in

Organic Carbon and Carbonate System in the Bottom Sediments of Shallow Bights of the Peter the Great Bay (Sea of Japan)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The diagenesis of organic matter (OM) is studied in bottom sediments taken in February, 2018 from therapeutic mud deposits of the Uglovoi Bay and Voevoda and Ekspeditsiya bights (Peter the Great Bay, Sea of Japan). The carbonate system of bottom sediments and pore water were analyzed for the contents of nutrients, dissolved organic carbon, humic substance, and concentrations of sulfates and chlorides. The concentrations of organic carbon, chlorophyll-a, humic and fulvic acids, and mobile sulfide species are measured in a solid phase of sediment. Underwater photographing shows that sampling localities are covered by Zostera marina meadows in the Voevoda and Ekspeditsiya bights and by diatom mats in Uglovoi Bay. The proportions between dissolved inorganic carbon and alkalinity, as well as data on sulfate–chlorine ratios and mobile sulfide species indicate that the OM degradation in bottom sediments is mainly controlled by sulfate reduction. The Uglovoi Bay and Voevoda and Ekspeditsii bights are characterized by different values of bioturbation coefficients: 3.0, 107.6, and 14.5 cm2/day, respectively. The estimated fluxes of organic carbon from water into sediment and of dissolved inorganic carbon from sediment into water significantly differ. The disbalance between organic and inorganic carbons can be caused by the following reasons: (a) ignored CO2 flux released by marine organisms from bottom sediments through their siphonal system; (b) partial OM consumption in food with its subsequent deposition in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. C. Aller, “Sedimentary diagenesis, depositional environments, and benthic fluxes,” Treatise on Geochemistry, 2nd edition, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2014), Vol. 8, pp. 293–334.

    Google Scholar 

  2. N. M. Andreeva, and A. I. Agatova, Organic matter in bottom sediments of Posieta Bay, Sea of Japan,” Biologiya Morya, No. 2, 40–49 (1981).

    Google Scholar 

  3. Yu. A. Barabanshchikov, P. Ya. Tishchenko, P. Yu. Semkin, T. A. T. I. Volkova, V. I. Zvalinskii, T. A. Mikhailik, S. G. Sagakaev, A. F. Sergeev, P. P. Tishchenko, and M. G. Shkirnikova, “Seasonal hydrological–hydrochemical studies of the Voevoda bight (Amur Bay, Sea of Japan),” Izv. TINRO 180, 161–178 (2015).

    Google Scholar 

  4. Yu. A. Barabanshchikov, P. Ya. Tishchenko, P. Yu. Semkin, T. A. Mikhailik, and A. A. Kos’yanenko, “Conditions of formation of therapeutic muds in Voevoda Bight, Amur Bay, Sea of Japan,” Izv. TINRO 192, 167–176 (2018).

    Article  Google Scholar 

  5. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea “Carbon–based ocean productivity and phytoplankton physiology from space,” Glob. Biogeochem. Cycles 19, GB1006 (2005). https://doi.org/10.1029/2004GB002299

    Article  Google Scholar 

  6. V. Ya. Berger, “Production of the Eel Grass Zostera marina Linnaeus, 1753 in the White Sea,” Russ. J. Mar. Biol. 37 (5), 371–375 (2011).

    Article  Google Scholar 

  7. R. A. Berner, Early Diagenesis. A Theoretical Approach (Princeton University Princeton, Princeton, 1980).

    Book  Google Scholar 

  8. R. A. Berner M. R. Scott, and C. Thomlinson, “Carbonate alkalinity in the pore waters of anoxic marine sediments,” Limnol. Oceanogr. 15 (4), 544–549 (1970).

    Article  Google Scholar 

  9. D. Breitburg, L. A. Levin, A. Oschlies, M. Gregoire, F. P. Chavez, D. J. Conley, V. Garcon, D. Gilbert, D. Gutierrez, K. Isensee, G. S. Jacinto, K. E. Limburg, I. Montes, S. W. A. Naqvi, G. C. Pitcher, N. N. Rabalais, M. R. Roman, K. A. Rose, B. A. Seibel, M. Telszewski, M. Yasuhara, and J. Zhang, “Declining oxygen in the global and coastal waters,” Science 359, 1–11 (2018).

    Article  Google Scholar 

  10. D. J. Burdige, “Sediment pore waters,” Biogeochemistry of Marine Dissolved Organic Matter (Elsevier Science, 2002), Vol. 13, pp. 611–663.

    Google Scholar 

  11. D. J. Burdige, R. C. Zimmerman, and X. Hu, “Rates of carbonate dissolution in permeable sediments estimated from pore–water profiles: the role of sea grasses,” Limnol. Oceanogr. 53(2), 549–565 (2008).

    Article  Google Scholar 

  12. A. S. Bychkov, G. Yu. Pavlova, and V. A. Kropotov, “Carbonate system,” Seawater Chemistry and Authigenic Mineral Formation, ed. by B. I. Il’ichev (Nauka, Moscow, 1989), pp. 49–111 [in Russian].

    Google Scholar 

  13. W.-J. Cai, X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.-C. Gong “Acidification of subsurface coastal waters enhanced by eutrophication,” Nature Geosci. 4, 766–770 (2011), https://doi.org/10.1038/NGEO1297

    Article  Google Scholar 

  14. M. Dahl, D. Deyanova, S. GuÈtschow, M. E. Asplund, L. D. Lyimo, V. Karamfilov, R. Santos, M. Bjoerk, and M. Gullstrom, “Sediment properties as important predictors of carbon storage in Zostera marina Meadows: a comparison of four European areas,” PLOS ONE 11 (12), e0167493 (2016), https://doi.org/10.1371/journal.pone.0167496

    Article  Google Scholar 

  15. J. E. Dore, R. Lukas, D. W. Sadler, M. J. Church, and D. M. Karl, “Physical and biogeochemical modulation of ocean acidification in the central North Pacific,” Proceed. Nat. Acad. Sci. 106 (30), 12235–12240 (2009).

    Article  Google Scholar 

  16. C. M. Duarte, T. Sintes, and N. Marba, “Assessing the CO2 capture potential of seagrass restoration projects,” J. Appl. Ecol. 50, 1341–1349 (2013).

    Article  Google Scholar 

  17. S. Forster, G. Graf, J. Kitlar, and M. Powilleit, “Effects of bioturbation in anoxic and hypoxic conditions: a microcosm experiment with a North Sea sediment community,” Mar. Ecol. Prog. Ser. 116, 153–161 (1995).

    Article  Google Scholar 

  18. P. N. Froelich, “Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism,” Limnol. Oceanogr. 33(4), 649–668 (1988).

    Google Scholar 

  19. K. Grasshoff, M. Ehrhardt, and K. Kremling, Methods of Seawater Analysis (Verlag Chemie, Weinheim/Deerfield Beach, 1983).

    Google Scholar 

  20. M. A. Green, R. C. Aller, J. K. Cochran, C. Lee, and J. Y. Aller, “Bioturbation in shelf/slope sediments off Cape Hatteras, North Carolina: the use of 234Th, Chl–a, and Br to evaluate rates of particle and solute transport,” Deep–Sea Res. II 49, 4627–4644 (2002).

    Article  Google Scholar 

  21. N. I. Grigor’eva, “Posieta Bay: physicogeographical characteristics, climate, and hydrological mode,” Modern Ecological State of the Peter the Great Bay, Sea of Japan, Ed. by N. K. Khristoforova, (Dal’nevost. Federal. Univ., Vladivostok, 2012), pp. 31–61.

    Google Scholar 

  22. J. Howard, S. Hoyt, K. Isensee, M. Telszewski, and E. Pidgeon, Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses Arlington (Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, 2014) 184 p.

    Google Scholar 

  23. H. Iizumi, A. Hattori, and C. P. McRoy, “Ammonium regeneration and assimilation in Eelgrass (Zostera marina) Beds,” Mar. Biol. 66, 59–65 (1982).

    Article  Google Scholar 

  24. V. L. Ivanova, L. A. Medvedeva, T. B. Afanas’eva, N. N. Barinov, and A. A. Karabtsov, “Results of geological-biological studies of therapeutic muds of the Peter the Great Bay,” Usp. Nauk Zhizni, No. 1, 162–170 (2009).

    Google Scholar 

  25. S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanz. 167 (2), 191–194 (1975).

    Article  Google Scholar 

  26. N. D. Khodorenko, T. I. Volkova, V. I. Zvalinskii, and P. Ya. Tishchenko, “Extraction kinetics and quantitative analysis of bottom sediments for humic substances,” Geochem. Int. 50 (4), 385–391 (2012).

    Article  Google Scholar 

  27. A. P. Lisitzin, “The silica cycle during the last ice age,” Palaeogeogr., Palaeoclimat., Palaeoecol. 50, 241–270 (1985).

    Article  Google Scholar 

  28. V. N. Lysenko, and V. M. Matyushina, Seasonal variations and Zostera production in Vityaz Bay, Sea of Japan, Biol. Morya 4, 38–45 (1984).

    Google Scholar 

  29. C. März, A.-K. Meinhardt, B. Schnetger, and H.-J. Brumsack, “Silica diagenesis and benthic fluxes in the Arctic Ocean,” Marine Chem. 171, 1–9 (2015).

    Article  Google Scholar 

  30. C. P. McRoy, “Seagrass productivity: carbon uptake experiments in eelgrass, Zoster Marina,” Aquaculture 4, 131–137 (1974).

    Article  Google Scholar 

  31. S. V. Muradov, Extended Abstract of Doctoral Dissertation in Biology (DVO RAN, Petropavlovsk Kamchatsky, 2014) [in Russian].

  32. E. A. Ostroumov, “Method of determination of sulfur compounds in Black Sea sediments,” Tr. Inst. Okeanologii 7, 57–69 (1953).

    Google Scholar 

  33. G. Yu. Pavlova, P. Ya. Tishchenko, T. I. Volkova, A. Dickson, and K. Wallmann, “Intercalibration of Bruevich’s method to determine the total alkalinity in seawater,” Oceanology 48 (3), 438–443 (2008).

    Article  Google Scholar 

  34. Pilot Chart of the Northwestern Coast of the Sea of Japan (GUNIO MO., St. Petersburg, 1996) [in Russian].

  35. A. C. Redfield, B. H. Ketchum, and F. A. Richards, “The influence of organisms on the composition of seawater,” The Sea, Ed. by M. N. Hill, (Interscience, New York, 1963), Vol. 2, 26–77.

    Google Scholar 

  36. M. E. Röhr, C. Boström, P. Canal-Vergés, and M. Holmer, “Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows,” Biogeosciences 13, 6139–6153 (2016).

    Article  Google Scholar 

  37. L. Rubio, A. Linares-Rueda, M. J. García–Sánchez, and J. A. Fernández, “Ammonium uptake kinetics in root and leaf cells of Zostera marina L.,” J. Exper. Mar. Ecol. Prog. Ser. 352, 271–279 (2007).

    Article  Google Scholar 

  38. S. Schmodtko, L. Stramma, and M. Visbeck, “Decline in global oceanic oxygen content during the past five decades,” Nature 542 (7641), 335–339 (2017). doi.1038/nature21399

  39. M. Sun, R. C. Aller, and C. Lee “Early diagenesis of chlorophyll-a in Long Island Sound sediments: A measure of carbon flux and particle reworking,” J. Mar. Res. 49, 379–401 (1991).

    Article  Google Scholar 

  40. M. Szymczak-Zyla, G. Kowalewska, and J. W. Louda, “Chlorophyll-a and derivatives in recent sediments as indicator productivity and depositional conditions,” Marine Chem. 125, 39–48 (2011).

    Article  Google Scholar 

  41. P. Tishchenko, Ya. K. Wallmann, N. A. Vasilevskaya, T. I. Volkova, V. I. Zvalinskii, N. D. Khodorenko, and E. M. Shkirnikova, “The contribution of organic matter to the alkaline reserve of natural waters,” Oceanology 46 (2), 211–219 (2006).

    Article  Google Scholar 

  42. P. Tishchenko, G. Pavlova, S. Sagalaev, M. Shvetsova, and P. Tishchenko, “Observations of carbonate system parameters in seawater using discrete samples, in surface waters by underway system and in sediments on a board of R/V Hakuho Maru at June–July 2010,” Preliminary Report of the R/V Hakuho Maru KH-10-2 Cruise CARINA Expedition – ASIAN GEOTRACES June 11, 2010–July (2010), Vol. 22, pp. 98–120.

  43. P. P. Tishchenko, P. Ya. Tishchenko, V. I. Zvalinskii, and A. F. Sergeev, “The carbonate system of Amur Bay (Sea of Japan) under conditions of hypoxia,” Oceanology 51 (2), 235–246 (2011).

    Article  Google Scholar 

  44. U. F. Treppke, C. B. Lange, and G. Wefer, “Vertical fluxes of diatoms and silicaflagellates in the eastern equatorial Atlantic, and their contribution to the sedimentary record,” Mar. Micropaleont. 28, 73–96 (1996).

    Article  Google Scholar 

  45. V. F. Vasil’chenko, N. G. Badalov, and L. N. Derkacheva, “Natural resources of Bight Ekspeditsiya as the basis for the spa center on the coast of the Peter the Great Bay, Sea of Japan,” Vopr. Kurortologii, Fizioterapii, Lechebn Fiz. Kul’tury 91 (4), 53–60 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (17-35-50072”mol_nr”, 16‑55-50071-а and 20-05-00381-a), “Far East” program (projects no. 18-1-007 and 18-1-010), and the State Task of the Marine Hydrophysical Institute (project no. 0827-2018-0004 “Coastal Studies”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ya. Tishchenko.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tishchenko, P.Y., Medvedev, E.V., Barabanshchikov, Y.A. et al. Organic Carbon and Carbonate System in the Bottom Sediments of Shallow Bights of the Peter the Great Bay (Sea of Japan). Geochem. Int. 58, 704–718 (2020). https://doi.org/10.1134/S0016702920050109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920050109

Keywords:

Navigation