Skip to main content
Log in

Genesis of Diamondiferous Rocks from Upper-Mantle Xenoliths in Kimberlite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The conditions of genesis of diamondiferous ultrabasic and basic rocks from xenoliths in kimberlite were studied by combining the data from analytical investigations of their mineral phases and experimental results of the study of melting relations in the diamond-forming mineral systems of the upper mantle. The compositions of minerals in some samples of metasomatized diamondiferous eclogite associated with diamond-free eclogite from kimberlite of the Udachnaya pipe (Yakutia) were studied for the first time. The new results obtained in addition to the literature data were applied for generalization of estimates of genetically important characteristics of the chemical compositions of garnets, Ca-clinopyroxenes, and omphacites from diamond-bearing peridotite, pyroxenite, and eclogite. As a result, it was found that quite “fresh” minerals of diamondiferous rocks have typomorphic differences from the same minerals of diamond-free upper-mantle rocks. At the same time, it is significant that the compositions of minerals from diamondiferous rocks and paragenetic inclusions in diamonds are identical. These peculiarities of mineralogy of diamondiferous rocks are genetically significant; based on the mantle–carbonatite theory of the origin of diamond and associated mineral phases, this provides support for the same physicochemical origin of diamonds, minerals of diamondiferous rocks, and paragenetic inclusions in diamonds. Finally, the following genetic conclusions are made. (1) Completely miscible silicate (±oxide)–carbonate melts with dissolved carbon are the parental medium in petrogenesis of diamondiferous ultrabasic and basic rocks. (2) The physicochemically consistent formation of diamondiferous rocks and paragenetic inclusions of peridotitic and eclogitic minerals in diamonds occurred in the common diamond-forming chambers/reservoirs of parental melts; diamond-free peridotite, pyroxenite, and eclogite were the host mantle rocks for such chambers. (3) The origin of continuous series of diamondiferous peridotite–pyroxenite–eclogite rocks is controlled by the fractional ultrabasic–basic evolution of parental melts with exhaustion of olivine and orthorhombic pyroxene via the peritectic reactions. (4) Ascending flows of kimberlite magmas destroyed the parental chambers and captured diamonds with inclusions, individual minerals, their intergrowths, diamondiferous ultrabasic and basic rocks; at the entrance and exit from the chambers, they captured differentiated diamond-free host rocks of the mantle as well. (5) With further ascent from the mantle to the Earth’s crust, the material of diamond-forming chambers and diamond-free mantle was mixed in convecting kimberlite magma and was transported from the mantle to cumulative crustal chambers. (6) Kimberlite magmas were gradually solidified in stationary cumulative chambers with the release of highly compressed fluids; with an increase of pressure up to the critical values, they intruded into the rocks of the roof and ejected kimberlite with xenoliths of diamondiferous and mantle rocks to the surface with the formation of explosion pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. T. A. Alifirova, L. N. Pokhilenko, Y. I. Ovchinnikov, C. L. Donelly, A. J. V. Riches, and L. A. Taylor, “Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutian kimberlites,” Int. Geol. Rev. 54 (9), 1071–1092 (2012).

    Article  Google Scholar 

  2. T. A. Alifirova, L. N. Pokhilenko, and A. V. Korsakov, “Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia,” Lithos 226, 31–49 (2015).

    Article  Google Scholar 

  3. S. Aulbach, N. J. Pearson, S. Y. O’Really, and B. J. Doyle, “Origins of xenolitic eclogites and pyroxenites from the central Slave Craton, Canada,” J. Petrol. 48 (10), 1843–1873 (2007).

    Article  Google Scholar 

  4. S. Aulbach, T. Stachel, L. M. Heaman, and J. A. Carlson, “Microxenoliths from the Slave Craton: Archives of diamond formation along fluid conducts,” Lithos 126, 419–434 (2011).

    Article  Google Scholar 

  5. Yu. P. Barashkov and N. G. Zudin, “Composition of garnets with diamond inclusions from the Krasnopresnenskaya kimberlite pipe,” Geol. Geofiz. 38 (2), 353–357 (1997).

    Google Scholar 

  6. A. P. Bobrievich, M. N. Bondarenko, M. A. Gnevushev, L. M. Krasov, G. I. Smirnov, and R. K. Yurkevich, Diamond Deposits of Yakutia (Gosgeoltekhizdat, Moscow, 1959) [in Russian].

    Google Scholar 

  7. A. V. Bobrov and Yu. A. Litvin, “Mineral equilibria of diamond–forming carbonate–silicate systems,” Geochem. Int. 49 (13), 1267–1363 (2011).

    Article  Google Scholar 

  8. T. G. Bonney, “The parent rock of the diamond in South Africa,” Geol. Mag. 6. 309–321 (1899).

    Article  Google Scholar 

  9. G. P. Bulanova, Yu. P. Barashkov, S. B. Tal’nikova, and G. P. Smelova, Natural Diamond: Genetic Aspects (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  10. S. T. Creighton, T. Stachel, H. McLean, K. Muechlenbachs, A. Simonetti, D. Eichenberg, and R. Luth, “Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine,” Contrib. Mineral. Petrol. 155, 541–554 (2008).

    Article  Google Scholar 

  11. J. B. Dawson, Kimberlites and their Xenoliths (Springer–Verlag, Berlin, 1980).

    Book  Google Scholar 

  12. J. B. Dawson and J. V. Smith, “Occurrence of diamond in a mica–garnet lherzolite xenoliths from kimberlite,” Nature 254, 580–58 (1975).

    Article  Google Scholar 

  13. A. M. Dymshits, A. V. Bobrov, L. Bindi, Yu. A. Litvin, K. D. Litasov, A. F. Shatsky, and E. Ohtani, “Na-bearing majoritic garnet in the Na2MgSi5O12–Mg2Al2Si5O12 join at 11–20 GPa: phase relations, structural peculiarities and solid solutions,” Geochim. Cosmochim. Acta 105, 1–13 (2013).

    Article  Google Scholar 

  14. E. M. Galimov, “Isotope fractionation related to kimberlite magmatism and diamond formation,” Geochim. Cosmochim. Acta 55, 1697–1708 (1991).

    Article  Google Scholar 

  15. T. Gasparik and Yu. A. Litvin, “Stability of Na2Mg2Si2O7 and melting relations on the forsterite–jadeite join at pressures up to 22 GPa,” Eur. J. Mineral. 9 (2), 311–326 (1997).

    Article  Google Scholar 

  16. W. L. Griffin and S. Y. O’Reilly, “Cratonic lithospheric mantle: is anything subducted?,” Episodes 30 (1), 43–53 (2007).

    Article  Google Scholar 

  17. W. L. Griffin, A. L. Jaques, S. H. Sie, C. G. Ryan, D. R. Coursens, and G. F. Suter, “Conditions of diamond growth: a proton microprobe study of inclusions in West Australian diamonds,” Contrib. Mineral. Petrol. 88, 143–158 (1988).

    Article  Google Scholar 

  18. W. L. Griffin, N. V. Sobolev, C. G. Ryan, N. P. Pokhilenko, T. T. Win, and E. S. Yefimova, “Trace elements in garnets and chromites: diamond formation in the Siberian lithosphere,” Lithos 29, 235–256 (1993).

    Article  Google Scholar 

  19. J. W. Harris, “The recognition of diamond inclusions. Pt. 1: Syngenetic inclusions,” Ind. Diamond Rev. 28, 402–410 (1968).

    Google Scholar 

  20. J.-X. Huang, W. L. Griffin, Y. Greau, N. J. Pearson, S. Y. O’Reilly, J. Cliff, and L. Martin, “Unmasking xenolitic eclogites: progressive metasomatism of a key Roberts Victor sample,” Chem. Geol. 364, 56–65 (2014).

    Article  Google Scholar 

  21. R. H. Hunter and L. A. Taylor, “Instability of garnet from the mantle: glass as evidence of metasomatic melting,” Geology 10, 617–620 (1982).

    Article  Google Scholar 

  22. I. P. Ilupin, E. S. Efimova, N. V. Sobolev, L. V. Usova, D. I. Savrasov, and A. D. Khar’kiv, “Inclusions in diamond from diamondiferous eclogite,” Dokl. Akad. Nauk SSSR 264 (2), 454–456 (1982).

    Google Scholar 

  23. D. E. Jacob, Jagoutz, D. Lowry, D. Mattey, and G. Kudrjavtseva, “Diamondiferous eclogites from Yakutia, Siberia: remnants of Archean oceanic crust,” Geochim. Cosmochim. Acta 58, 5191–5207 (1994).

    Article  Google Scholar 

  24. F. V. Kaminsky, The Earth’s Lower Mantle. Composition and Structure (Springer Geology, 2017).

    Book  Google Scholar 

  25. O. Klein-BenDavid, A. M. Logvinova, M. Shrauder, Z. V. Spetsius, Ya. Weiss, E. H. Hauri, F. V. Kaminsky, N. V. Sobolev, and O. Navon, “High–Mg carbonatitic microinclusions in some Yakutian diamonds – a new type of diamond–forming fluid,” Lithos 112S, 648–659 (2009).

    Article  Google Scholar 

  26. Yu. A. Litvin, Physicochemical Studies of Melting of Deep–Seated Matter of the Earth (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  27. Yu. A. Litvin, “Hot mantle spots and experiment up to 10 Gpa: alkaline reactions, carbonation of lithoshere, and new diamond–forming systems,” Geol. Geofiz. 39 (12), 1772–1779 (1998).

    Google Scholar 

  28. Yu. A. Litvin, “High–pressure mineralogy of diamond genesis,” Advances in High–Pressure Mineralogy, Ed. by Eiji Ohtani, Geol. Soc. Am. Sp. Paper 121, 83–103 (2007).

  29. Yu. A. Litvin, “The physicochemical conditions of diamond formation in the mantle matter: experimental studies,” Russ. Geol. Geophys. 50 (12), 1188–1200 (2009).

    Article  Google Scholar 

  30. Yu. A. Litvin, “Physicochemical formation conditions of natural diamond deduced from experimental study of the eclogite–carbonatite–sulfide–diamond system,” Geol. Ore Deposits 54 (6), 443–457 (2012).

    Article  Google Scholar 

  31. Yu. A. Litvin, “Physicochemical conditions of syngenesis of diamond and heterogenous inclusions in the carbonate–silicate parental melts (experimental study),” Mineral. Zh. (Ukraine) 35 (2), 5–24 (2013).

    Google Scholar 

  32. Yu. A. Litvin, Genesis of Diamonds and Associated Phases (Springer Mineralogy, 2017).

    Book  Google Scholar 

  33. Yu. A. Litvin and V. A. Zharikov, “Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570°C,” Dokl. Earth Sci. 373 (5), 867–870 (2000).

    Google Scholar 

  34. Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov. The first synthesis of diamond in sulfide-carbon systems: the role of sulfides in diamond genesis. Docl Earth Sci 382 (1), 40–43.

  35. Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental characterization of diamond crystallization in melts of mantle silicate–carbonate–carbon systems at 7.0–8.5 GPa,” Geochem. Int. 46 (6), 531–553 (2008).

    Article  Google Scholar 

  36. Yu. A. Litvin, P. G. Vasiliev, A. V. Bobrov, V. Yu. Okoemova, and A. V. Kuzyura, “Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment,” Geochem. Int. 50 (9), 726–759 (2012).

    Article  Google Scholar 

  37. Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Fundamentals of mantle carbonatite concept of diamond genesis,” Geochem. Int. 54 (10), 839–857 (2016).

    Article  Google Scholar 

  38. Yu. A. Litvin and A. V. Kuzyra, “Fractional ultrabasic–basic evolution of the upper mantle magmas: role of olivine and orthopyroxene peritectic reactions by experimental evidence,” in Proceedings of 35 International Conference “Magmatism of the Earth and Related Strategic Metal Deposits” (ICEMRSMD–35) (GEOKHI, Moscow, 2018), pp. 188–192.

  39. Yu. A. Litvin, A. V. Bovkun, and V. K. Garanin, “Interaction of titanium minerals ant their melts with diamond–forming media (experiments at 7–8 GPa),” Geochem. Int. 56 (2), 148–161 (2018a).

    Article  Google Scholar 

  40. Yu. A. Litvin, A. V. Kuzyura, D. A. Varlamov, A. V. Bovkun, A. V. Spivak, and V. K. Garanin, “Interaction of kimberlite magma with diamonds upon lift from the upper mantle to the Earth’s crust,” Geochem. Int. 56 (9), 881–900 (2018b).

    Article  Google Scholar 

  41. A. M. Logvinova, L. A. Taylor, E. N. Fedorova, A. P. Yelisseyev, G. Howarth, V. N. Reutskii, R. Wirth, and N. V. Sobolev, “A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe (Yakutia): role of subduction in diamond formation,” Russ. Geol. Geophys. 56(1–2), 306–320 (2015).

    Article  Google Scholar 

  42. S. Maaloe, Principles of Igneous Petrology (Springer, Berlin, 1985).

    Book  Google Scholar 

  43. I. D. MacGregor and J. L. Carter, “The chemistry of clinopyroxenes and garnets of eclogites and peridotite xennoliths from the Roberts Victor mine, South Africa,” Phys. Earth Planet. Int., No. 3, 391–397 (1970).

  44. A. A. Marakushev, “Peridotite nodules in kimberlites as indicators of deep lithosphere structure,” Reports of Soviet Geologists at the 27th Session of the International Geological Congress. Petrology, Moscow, Russia,1985 (Nauka, Moscow, 1985), Vol. 13, pp. 5–13 [in Russian].

  45. M. Mathias, J. C. Siebert, and P. C. Rickwood, “Some aspects of the mineralogy and petrology of ultramafic xenoliths in kimberlite,” Contrib. Mineral. Petrol. 26, 75–123 (1970).

    Article  Google Scholar 

  46. M. E. McCallum and D. H. Eggler “Diamonds in upper mantle peridotite nodule from kimberlite in Southern Wyoming,” Science 192, 253–256 (1976).

    Article  Google Scholar 

  47. T. R. McGetchin and J. R. Besancon, “Carbonate inclusions in mantle–derived pyropes,” Earth Planet. Sci. Lett. 18, 408–410 (1970).

    Article  Google Scholar 

  48. H. O. A. Meyer and F. R. Boyd, “Composition and origin of crystalline inclusions in natural diamonds,” Geochim. Cosmochim. Acta 36, 1255–1273 (1972).

    Article  Google Scholar 

  49. O. Navon, I. D. Hutcheon, G. R. Rossman, and G. J. Wasserburg, “Mantle–derived fluids in diamonds micro–inclusions,” Nature 335, 784–79 (1988).

    Article  Google Scholar 

  50. M. J. O’Hara and H. S. Yoder, “Formation and fractionation of basic magma at high pressures,” Scot. J. Geol., No. 3, 67–117 (1967).

  51. L. S. Palatnik. and A. I. Landau, Phase Equilibria in Multicomponent Systems (KhGU, Khar’kov, 1964) [in Russian].

  52. N. P. Pokhilenko, N. V. Sobolev, and E. S. Efimova, “Xenolith of cataclased diamondiferous dysthene eclogite from the Udachnaya pipe (Yakutia),” Dokl. Akad. Nauk SSSR 266 (10), 212–216 (1982).

    Google Scholar 

  53. N. P. Pokhilenko, N. V. Sobolev, V. N. Reutsky, A. E. Hall, and L. A. Taylor, “Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake–King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle,” Lithos 77, 57–67 (2004).

    Article  Google Scholar 

  54. L. N. Pokhilenko, V. G. Malkovets, D. V. Kuzmin, and N. P. Pokhilenko, “New data on the mineralogy of megacrystalline pyrope peridotite from the Udachnaya kimberlite pipe, Siberian Craton, Yakutian diamondiferous province,” Dokl. Earth Sci. 454 (2), 179–184 (2014).

    Article  Google Scholar 

  55. A. I. Ponomarenko, N. V. Sobolev, N. P. Pokhilenko, Yu. G. Lavrent’ev, and V. S. Sobolev, Diamond-bearing grospydite and diamondiferous dysthene eclogites from the Udachnaya kimberlite pipe, Yakutia,” Dokl. Akad. Nauk SSSR 226 (4), 927–930 (1976).

    Google Scholar 

  56. F. N. Rhines, Phase Diagrams in Metallurgy: Their Development and Application (McGraw–Hill, New York, 1956).

    Google Scholar 

  57. A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw–Hill, New York, 1975).

    Google Scholar 

  58. S. Shatsky, A. Ragozin, D. Zedgenizov, and S. Mityukhin, “Evidence for multistage evolution of diamond–bearing eclogite from the Udachnaya kimberlite pipe,” Lithos 105, 289–300 (2008).

    Article  Google Scholar 

  59. M. Shrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58(2), 761–771 (1994).

    Article  Google Scholar 

  60. A. V. Shushkanova and Yu. A. Litvin, “Experimental evidence for liquid immiscibility in the model system CaCO-3–pyrope–pyrrotite at 7.0 GPa,” Can. Mineral. 46, 991–1005 (2008).

    Article  Google Scholar 

  61. K. A. Smart, I. M. Heaman, and T. Chasco, “The origin of high–MgO diamond eclogites from the Jericho kimberlite, Canada,” Earth Planet. Sci. Lett. 284(3–4), 527–537 (2009).

    Article  Google Scholar 

  62. N. S. Sobolev, B. S. Nai, N. V. Sobolev, Yu. G. Lavrentiev, and L. N. Pospelova, “Xenoliths of diamondiferous pyrope serpentinites from the Aikhail pipe, Yakutia,” Dokl. Akad. Nauk SSSR 188 (5), 1141–1143 (1969).

    Google Scholar 

  63. N. V. Sobolev, Mantle Inclusions in Kimberlites and Problem of Upper Mantle Composition (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  64. N. V. Sobolev, L. A. Taylor, G. A. Snyder, E. A. Jerde, C. R. Neal, and N. V. Sobolev, “Quantifying the effect of metasomatism in mantle xenoliths: constraints from secondary chemistry and mineralogy in Udachnaya eclogites, Yakutia,” Int. Geol. Rev. 41, 391–416 (1999).

    Article  Google Scholar 

  65. N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, N. P. Pokhilenko, D. V. Kuzmin, and A. V. Sobolev, “Olivine inclusions in Siberian diamonds: high–precision approach to minor elements,” Eur. J. Miner. 28. 305–315 (2008).

    Article  Google Scholar 

  66. N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, N. P. Pokhilenko, E. V. Malygina, D. V. Kuzmin, and A. V. Sobolev, “Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia,” Lithos 112S, 701–713 (2009).

    Article  Google Scholar 

  67. V. N. Sobolev, L. A.Taylor, G. A. Snyder, and N. V. Sobolev “Diamondiferous eclogites from the Udachnaya pipe, Yukutia,” Int. Geol. Rev. 36, 42–64 (1994).

    Article  Google Scholar 

  68. V. S. Sobolev, N. V. Sobolev, and Yu. G. Lavrent’ev, “Inclusions in diamond from diamondiferous eclogite,” Dokl. Akad. Nauk SSSR 207 (1), 164–167 (1972).

    Google Scholar 

  69. Z. V. Spetsius and L. A. Taylor, “Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis,” Int. Geol. Rev. 44(11), 973–987 (2002).

    Article  Google Scholar 

  70. Z. V. Spetsius and L. A. Taylor, Diamonds of Siberia. Photographic Evidence for their Origin (Tranquility Base Press, Lenoir City, 2008).

  71. Z. V. Spetsius, A. S. Ivanov, and S. I. Mityukhin, “Diamondiferous xenoliths and megacrysts from the Nyurbinskaya kimberlite pipe (Nakynsky Field, Yakutia),” Dokl. Earth Sci. 409 (5), 779–783 (2006).

    Article  Google Scholar 

  72. Z. V. Spetsius, L. A. Taylor, J. W. Valley, M. T. Dingelis, M. Spicuzza, A. S. Ivanov, and V. I. Banzeruc, “Diamondiferous xenoliths from crustal subdaction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia,” Eur. J. Mineral. 20, 375–385 (2008).

    Article  Google Scholar 

  73. Z. V. Spetsius, I. N. Bogush, and O. E. Kovalchuk, “FTIR mapping of diamond plates of eclogitic and peridotitic xenoliths from the Nyurbinskaya pipe (Yakutia): genetic implications,” Russ. Geol. Geophys. 6 (1–2), 344–353 (2015).

    Article  Google Scholar 

  74. T. Stachel, K. S. Viljoen, G. Brey, and J. W. Harris, “Metasomatic processes in lherzolitic and harzburgitic domaihs of the diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds,” Earth Planet. Sci. Lett. 159, 1–12 (1998).

    Article  Google Scholar 

  75. A. S. Stepanov, V. S. Shatsky, D. A. Zedgenizov, and A. L. Ragozin, “Chemical heterogeneity in the diamondiferous eclogite xenolith from the Udachnaya kimberlite pipe,” Dokl. Earth Sci. 419 (2), 308–311 (2008).

    Article  Google Scholar 

  76. L. A. Taylor and M. Anand, “Diamonds: time capsules from the Siberian mantle,” Chem. Erde–Geochiem. 64, 1–74 (2004).

    Article  Google Scholar 

  77. L. A. Taylor, Z. V. Spetsius, R. Wiesli, M. Spicuzza, and J. W. Valley, “Diamondiferous peridotites from oceanic protoliths: crustal signatures from Yakutian kimberlites,” Russ. Geol. Geophys. 46 (12), 1198–1206 (2005).

    Google Scholar 

  78. K. S. Viljoen, R. Dobbe, B. Smit, F. Thomassot, P. Cartigny. Petrology and geochemistry of diamondiferous lherzolite from the Premier diamond mine, South Africa. Lithos 77, 539–552 (2004)

  79. A. F. Williams, The Genesis of the Diamond (Ernest Benn Ltd, London, 1932).

    Google Scholar 

  80. H. S. Yoder, Generation of Basaltic Magmas (National Academy of Sciences, Washington, 1976).

    Google Scholar 

  81. A. M. Zakharov, Multicomponent Metallic Systems with Intermediate Phases (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  82. D. A. Zedgenizov, A. L. Ragozin, V. S. Shatsky, D. Araujo, W. L. Griffin, and H. Kagi, “Mg-and Fe-rich carbonate–silicate high–density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia),” Lithos 112S, 638–647 (2009).

    Article  Google Scholar 

Download references

Funding

This study was a part of the thematic project of the Institute of Experimental Mineralogy, Russian Academy of Sciences (no. AAAA-A18-118020590140-7) and was supported by the Presidium of the Russian Academy of Sciences (program no. I.08.P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Kuzyura, A.V., Bovkun, A.V. et al. Genesis of Diamondiferous Rocks from Upper-Mantle Xenoliths in Kimberlite. Geochem. Int. 58, 245–270 (2020). https://doi.org/10.1134/S0016702920030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920030088

Keywords:

Navigation