Skip to main content
Log in

Biotransformation of Neptunium in Model Groundwaters

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The kinetics of Np(VI and V) reduction was studied in model underground water in the presence of bacteria, isolated from from deep-injection disposal of liquid radioactive wastes of Siberian Chemical Plant. Obtained data indicate a chemical instability of Np(VI) in the studied system. The reduction of neptunium (V) depended on its initial concentration and the presence of microorganisms. In microbiome samples, the reduction rate has significantly increased and neptunium-bearing particles more than 200 nm in size were formed. At neptunium concentrations less than 10–7 М, the reduction rate constant did not depend on the radionuclide content (half-reaction period of 36–40 days). An increase of Np concentration to 10–6 М led to a two-fold decrease of the reduction rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. A. Boldyrev, D. V. Kryuchkov, K. V. Martynov, A. S. Nuzhnyi, and V. V. Suskin, Development of Algorithms for Estimating Radionuclide Migration beyond the IBB with Allowance for their Evolution, Preprint IBRAE-2017-11 (IBRAE, Moscow, 2017) [in Russian].

  2. D. L. Clark, S. Siegfried, G. Hecker, D. Jarvinen, and M. P. Neu, “Plutonium,” The Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstein, and J. Fuger, (Springer, Dordrecht, 2006), Vol. 2, 813–1264.

    Google Scholar 

  3. D. Feikhi, Chemistry of Actinides (Mir, Moscow, 1991), Vol. 1, pp. 490–491 [in Russian].

  4. G. A. Icopini, H. Boukhalfa, and M. P. Neu, “Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria,” Environ. Sci. Technol. 41 (8), 2764–2769 (2007).

    Article  Google Scholar 

  5. S. A. Ivanova, M. N. Mikheeva, A. P. Novikov, and B. F. Myasoedov, “Preconcentration of neptunium by supported liquid membranes for luminescent analyses of environmental samples,” J. Radioanal. Nucl. Chem., Lett. 186, 341–345 (1994).

    Google Scholar 

  6. I. M. Kosareva, A. V. Safonov, M. K. Savushkina, B. G. Ershov, S. A. Kabakchi, Yu. A. Revenko, R. R. Khafizov, V. V. Bondin, and T. N. Nazina, “Physicochemical and biological monitoring of deep repositories for liquid radioactive wastes,” Atomic Energy 103 (2), 615–622 (2007).

    Article  Google Scholar 

  7. J. R. Lloyd, J. Chesnes, S. Glasauer, D. J. Bunker, F. R. Livens, and D. R. Lovley, “Reduction of actinides and fission products by Fe(III)-reducing bacteria,” Geomicrobiol. J. 19, 103–120 (2002).

    Article  Google Scholar 

  8. D. R. Lovley and E. J. Phillips, “Reduction of uranium by Desulfovibrio desulfuricans,” Appl. Environ. Microbiol. 58 (3), 850–856 (1992).

    Article  Google Scholar 

  9. D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, and E. R. Landa, “Microbial reduction of uranium,” Nature 350, 413–416 (1991).

    Article  Google Scholar 

  10. N. N. Lyalikova and T. V. Khizhnyak, “Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus,” Microbiology 65 (4), 468–473 (1996).

    Google Scholar 

  11. L. E. Macaskie, “The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams,” Crit. Rev. Biotechnol.11, 41–112 (1991).

    Article  Google Scholar 

  12. L. E. Macaskie, K. M. Bonthrone, P. Yong, and D. T. Goddard, “Enzymically mediated bioprecipitation of uranium by Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation,” Microbiol. 146, 1855–1867 (2000).

    Article  Google Scholar 

  13. B. F. Myasoedov and A. P. Novikov, “Main sources of radioactive contamination in Russia and methods for their determination and speciation,” Radioanal. Nucl. Chem., Art. 229 (1–2), 33–38 (1997).

    Google Scholar 

  14. T. N. Nazina, A. V. Safonov, I. M. Kosareva, V. S. Ivoilov, A. B. Poltaraus, and B. G. Ershov, “Microbiological processes in the Severnyi deep disposal site for liquid radioactive wastes,” Microbiol. 79 (4), 528–537 (2010).

    Article  Google Scholar 

  15. A. P. Novikov, “Migration of radioniclides in the environment,” Geochem. Int. 48 (13), 1285–1398 (2010).

    Article  Google Scholar 

  16. A. P. Novikov, Yu. I. Fabelinsky, E. A. Lavrinovich, T. A. Goryachenkova, and A. A. Grechnikov, “Membrane luminescence determination of technogenic actinides and their speciation in environmental objects,” Geochem. Int. 54 (13), 1196–1209 (2016).

    Article  Google Scholar 

  17. A. P. Novikov, E. V. Zakharova, T. A. Goryachenkova, E. V. Kuzovkina, and A. M. Emel’yanov, “Fractionation of colloidal matter of stratal waters during deep burial of radioactive wastes,” Geochem. Int. 56 (7), 743–749 (2018).

    Article  Google Scholar 

  18. D. L. Parkhurst and C. A. J. Appelo, User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation,Batch-Reaction, One-Dimensional Rransport, and Inverse Geochemical Calculations (1999).

    Google Scholar 

  19. I. Puigdomenech, “INPUT, SED, and PREDOM: Computer programs drawing equilibrium diagrams”, TRITA-OOK-3010 12, Royal Institute of Technology, Dept. Inorg. Chem., S-100 44 Stockholm (1983).

  20. J. C. Renshaw, J. R. Lloyd, and R. L. Francis, “Microbial interaction with actinides and long-lived fission products,” C.R. Chimie 10, 1067–1077 (2007).

    Article  Google Scholar 

  21. B. E. Rittmann, J. E. Banaszak, and D. T. Reed “Reduction of Np(V) and precipitation of Np(IV) by an anaerobic microbial consortium,” Biodegradation 13 (5), 329–342 (2002).

    Article  Google Scholar 

  22. A. I. Rybal’chenko, M. K. Pimenov, and P. P. Kostin, Deep Burial of Liquid Radioactive Wastes (IzdAT, Moscow, 1994) [in Russian].

  23. A. V. Safonov, T. L. Babich, D. S. Sokolova, D. S. Grouzdev, T. P. Tourova, A. B. Poltaraus, E. V. Zakharova, A. Y. Merkel, A. P. Novikov, T. N. Nazina, “Microbial community and in situ bioremediation of groundwater by nitrate removal in the zone of a radioactive waste surface repository,” Front. Microbiol. 1985 (9), 2–17 (2018).

    Google Scholar 

  24. C. L. Thorpe, K. Morris, J. R. Lloyd, M. A. Denecke, K. A. Law, K. Dardenne, C. Boothman, P. Bots, and T. W. Law Gareth, “Neptunium and manganese biocycling in nuclear legacy sediment systems,” Appl. Geochem. 63, 303–309 (2015).

    Article  Google Scholar 

  25. F. Weigel. “Uranium,” The Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstein, and J. Fuger (Springer, Dordrecht, 2006), Vol. 1, pp. 253–698.

    Google Scholar 

  26. A. J. Williamson, “Microbially mediated reduction of Np(V) by a consortium of alkaline tolerant Fe(III)-reducing bacteria,” Mineral. Mag. 79 (6), 1287–1295 (2016).

    Article  Google Scholar 

  27. A. A. Zubkov, O. V. Makarova, V. V. Danilov, E. V. Zakharova, E. P. Kaimin, K. A. Meyailo, and A. I. Rybal’-chenko, “Anthropogenic geochemical processes in reservoir sandstones during disposal of liquid radioactive wastes,” Geoekologiya, No. 2, 133–144 (2002).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 17-17-01212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Novikov, A. V. Safonov or T. L. Babich.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, A.P., Safonov, A.V., Babich, T.L. et al. Biotransformation of Neptunium in Model Groundwaters. Geochem. Int. 58, 182–188 (2020). https://doi.org/10.1134/S0016702920020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920020081

Keywords:

Navigation