Skip to main content
Log in

Material Composition and Geochemical Characteristics of Technogenic River Silts

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The paper discusses the results of many years of studying the material composition and geochemical characteristics, conditions, and processes in the formation of technogenic river silts: a new type of modern river sediments formed in riverbeds within the boundaries and zones of influence of industrial–urbanized areas. The article examines the main sources and most important characteristics of technogenic sedimentary material flowing into rivers, as well as the geochemical conditions of technogenic alluvial sedimentation, the morphology and structure of technogenic silts, the extent of their spatial distribution in riverbeds, their grain size characteristics, and mineral and chemical composition. Special attention is paid to analyzing the group composition of organic matter in river sediments and the features of its transformation in pollution zones. The study analyzes the technogenic geochemical associations that form in silts in zones of influence of various impact sources, the features of the concentration and distribution of chemical elements, heavy metal speciation, the composition of exchangeable cations in technogenic silts and natural (background) alluvium, and the composition of silt water. Possible secondary transformations of technogenic silts and their significance as a long-term source of pollution of the water mass and hydrobionts are substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.

Similar content being viewed by others

REFERENCES

  1. L. I. Aleksandrova, Organic Matter of Soil and Processes of its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. J. R. L. Allen, “A review of the origin and characteristics of recent alluvial sediments,” Sedimentology 5 (2), 89–191 (1965).

    Article  Google Scholar 

  3. V. E. Artem’ev, Geochemistry of Organic Matter in the River–Sea System (Nauka, Moscow, 1993) [in Russian].

  4. E. D. Babenkov, Water Purification by Coagulants (Nauka, Moscow, 1977) [in Russian]. M. G. Berger, Terrigenous Mineralogy (Nedra, Moscow, 1986).

  5. V. S. Borovkov, Channel Processes and Dynamics of River Streams at the Urban Lands (Gidrometeoizdat, Leningad, 1989) [in Russian]. H. J. M. Bowen, Environmental Chemistry of the Elements (Academic Press, London, 1979).

  6. W. L. Bradford, “Urban stormwater pollutant loadings: a statistical summary through 1972,” J. Water Pollut. Control. Fed. 49, 613–622 (1977).

    Google Scholar 

  7. I. A. Breger, “Geochemistry of lipids,” J. Amer. Oil Chemists Soc. 43 (4), 197–202 (1966).

    Article  Google Scholar 

  8. A. H. Brownlow, Geochemistry (Englewood Cliffs, Prentice-Hall, New York, 1979).

  9. R. L. Bunch, E. F. Barth, and M. B. Ettinger, “Organic materials in secondary effluent,” J. Water Pollut. Control. Fed. 33 (2), 122–126 (1961).

    Google Scholar 

  10. Detritus Runoff. Its Study and Geographic Distribution (Gidrometeoizdat, Leningrad, 1977) [in Russian].

  11. V. V. Dobrovol’sky, Quaternary Supergenesis (Mysl’, Moscow, 1966) [in Russian].

    Google Scholar 

  12. S. V. Efremova, and K. G. Stafeev, Petrochemical Methods of Rock Study (Nedra, Moscow, 1985).

    Google Scholar 

  13. A. Z. Evilevich, and M. A. Evilevich, Utilization of Effluents (Stroiizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  14. N. J. Fendinger, D. D. Adams, and D. E. Glotfelty, “The role of gas ebullition in the transport of organic contaminants from sediments,” Sci. Total Environ. 112 (2–3), 189–201 (1992).

    Article  Google Scholar 

  15. G. M. Gadd, “Microbial metal transformations,” J. Microbiol. 39 (2), 83–88 (2001).

    Google Scholar 

  16. N. I. Gorbunov, Highly Dispersed Minerals and Methods of their Study (AN SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  17. V. V. Gordeev, and A. P. Lisitsyn, “Average chemical composition of world’s rivers suspended matter and ocean feeding by sedimentary river material,” Dokl. Akad. Nauk SSSR 238 (1), 225–228 (1978).

    Google Scholar 

  18. R. E. Grim, Clay Mineralogy (McGraw, New York, 1967).

    Google Scholar 

  19. S. Heaven, M. A. Ilyushenko, T. W. Tanton, S. M. Ullrich, and E. P. Yanin, “Mercury in the River Nura and its floodplain, Central Kazakhstan: I. River sediments and water,” Sci. Total Environ. 260 (1–3), 35–44 (2000a).

    Article  Google Scholar 

  20. S. Heaven, M. A. Ilyushenko, I. M. Kamberov, M. I. Politicov, T. W. Tanton, S. M. Ullrich, and E. P. Yanin, “Mercury in the River Nura and its floodplain, Central Kazakhstan: II. Floodplain soils and riverbank silt deposits,” Sci. Total Environ. 260 (1–3), 45–55 (2000b).

    Article  Google Scholar 

  21. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Florida, 1986).

    Google Scholar 

  22. Yu. P. Kazansky, Weathering and its Role in Sedimentation (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  23. M. G. Kendall, Time-Series (Charles Griffin, London, 1976).

    Google Scholar 

  24. M. M. Kononova, Organic Matter of Soil (AN SSSR, Moscow, 1963) [in Russian].

    Book  Google Scholar 

  25. M. M. Kononova, and N. P. Belchikova, “Accelerated methods of determination of humus composition of mineral soils,” Pochvovedenie, No. 10, 75–87 (1961).

    Google Scholar 

  26. V. A. Kuznetsov, Geochemistry of Alluvial Lithogenesis (Nauka tekhnika, Minsk, 1973) [in Russian].

  27. D. G. Last, “Urban erosion control: the conservation district role in Wisconsin,” J. Soil Water Conserv. 36 (5), 270–274 (1981).

    Google Scholar 

  28. A. A. Lazarenko, Lithology of Alluvium of Plain Rivers of Humid Zone (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  29. P. M. Linnik, and B. I. Nabivanets, Species of Metal Migration in Fresh Surface Waters (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  30. B. S. Lunev, Differentiation of Sediments in Modern Alluvium (Permsk. Univ., Perm’, 1967) [in Russian].

  31. N. I. Makkaveev, and R. S. Chalov, Channel Processes (MGU, Moscow, 1986) [in Russian].

    Google Scholar 

  32. J. Manka, M. Rebhun, A. Mandelbaum, and A. Bortinger, “Characterization of organics in secondary effluents,” Environ. Sci. Technol. 8 (12), 1017–1020 (1974).

    Article  Google Scholar 

  33. F. R. C. Mantoura, A. Dickson, and J. P. Riley, “The complexation of metals with humic materials in natural waters,” Estuar. Coast. Mar. Sci. 6 (4), 387–408 (1978).

    Article  Google Scholar 

  34. J. M. Martin and M. Meybeck, “The content of major elements in the dissolved and particulate load of river,” Biogeochemistry of Estuarine Sediments (UNESCO, Paris, 1978), pp. 95–110.

    Google Scholar 

  35. J. M. Martin and M. Meybeck, “Elemental mass balance of material carried by major world rivers,” Mar. Chem. 7 (3), 173–206 (1979).

    Article  Google Scholar 

  36. G. Matthess, “The role of natural organics on water interaction with soil and rock,” IAHS-AISH Publ., No. 150, 11–21 (1984).

  37. Maximum Admissible Concentrations (MAC) of Chemical Matters in Objects of Household and Cultural-Domestic Water Use: Hygienic Norms (Minzdrav Rossii, Moscow, 1998) [in Russian].

  38. Ts. E. Mirtskhulava, Principles of Physics and Mechanics of Channel Erosion (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  39. M. V. Molokov, and V. N. Shifrin, Purification of Surface Discharge Runoff from the Towns and Industrial Sites (Moscow, Stroiizdat, 1977) [in Russian].

    Google Scholar 

  40. J. Moore and S. Ramamurthy, Heavy Metals in Natural Waters (Springer, New York, 1984).

    Book  Google Scholar 

  41. A. M. Nikanorov and A. G. Stradomskaya, “Chemical composition of organic and mineral substances in silt bottom sediments of non-contaminated water bodies,” Water Res. 33 (1), 64–70 (2006).

    Article  Google Scholar 

  42. J. O. Nriagu and R. D. Coker, “Trace metals in humic and fulvic acids from Lake Ontario sediments,” Environ. Sci. Technol. 14 (4), 443–446 (1980).

    Article  Google Scholar 

  43. C. Ollier, Weathering (Longman, London, 1984).

    Google Scholar 

  44. A. Yu. Opekunov, Aquatic Technosedimentogenesis (Nauka, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  45. D. S. Orlov, and L. A. Grishina, Practicum on Humus Chemistry (MGU, Moscow, 1981) [in Russian].

    Google Scholar 

  46. B. M. Osovetskii, Geochemical Studies on Heavy Minerals (Perm Univ., Perm’, 2003) [in Russian].

  47. J. A. Pascual, C. García, T. Hernandez, and M. Ayuso, “Changes in the microbial activity of arid soil amended with urban organic wastes,” Biol. Fertil. Soils 24 (4), 429–434 (1997).

    Article  Google Scholar 

  48. R. R. Pawson, D. R. Lord, M. G. Evans, and T. E. H. Allott, “Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK,” Hydrol. Earh Syst. Sci. 12 (2), 625–634 (2008).

    Article  Google Scholar 

  49. C. Payet, C. Bryselbout, J. L. Morel, and E. Lichtfouse, “Organic geochemistry of sewage sludge. I. Lipid fractionation by thin layer chromatography,” Analysis 27 (5), 396–398 (1999).

    Google Scholar 

  50. A. J. Plater, J. Ridgway, P. G. Appleby, A. Berry, and M. R. Wright, “Historical contaminant fluxes in the Tees estuary, UK: geochemical, magnetic and radionuclide evidence,” Mar. Pollut. Bull. 37 (3–7), 343–360 (1999).

    Article  Google Scholar 

  51. V. V. Polikarpochkin, Secondary Haloes and Dispersal Flows (Nauka, Novosibirsk, 1976).

    Google Scholar 

  52. S. S. Polyakov, “Composition and properties of moraine sediments of Moscow region,” Uch. Zap. Mosk. Gos. Univ., Gruntovedenie, No. 8, 61–84 (1956).

    Google Scholar 

  53. V. V. Ponomareva, and T. A. Plotnikova, “Methods and some results of fractionation of chernozem humus,” Pochvovedenie, No. 11, 104–117 (1968).

    Google Scholar 

  54. Principles and Methods of Geochemical Studies in Predicting and Searching Ore Deposits (Leningrad, Nedra, 1979) [in Russian].

  55. N. I. Razenkova, T. V. Filippova, and E. P. Yanin, “On speciation of heavy metals in anthropogenic flux,” Methods of Study of Anthropogenic Geochemical Anomalies (IMGRE, Moscow, 1984), pp. 66–69.

    Google Scholar 

  56. Reference Book on Water Resources of the USSR. Volume 13. Northern Caucasus (GGI, Leningrad, 1933) [in Russian].

  57. Resources of Surface Waters of the USSR (Gidrometeoidzat, Moscow, 1973a), Vol. 10, Book 1.

  58. Resources of Surface Waters of the USSR (Gidrometeoidzat, Moscow, 1973b), Vol. 10, Book 2.

  59. J. K. Rigby, and W. K. Hamblin, “Recognition of ancient sedimentary environments,” Soc. Econ. Paleontol. Mineral., Spec. Publ. 16, 1972.

  60. A. B. Ronov, and A. A. Yaroshevsky, “New model of the chemical structure of the Earth’s crust,” Geokhimiya, No. 12, 1763–1795 (1976).

    Google Scholar 

  61. A. B. Ronov, M. S. Mikhailovskaya, and I. I. Solodkova, Evolution of chemical and mineralogical composition of sandy rocks, Chemistry of the Earth’s Crust (AN SSSR, Moscow, 1963), Vol. 1, pp. 201–252.

    Google Scholar 

  62. Y. E. Sayet, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IMGRE, Moscow, 1982) [in Russian].

  63. Y. E. Sayet and N. I. Nesvizhskaya, Study of Element Speciation in Secondary Dispersal Haloes (VIEMS, Moscow, 1974) [in Russian].

    Google Scholar 

  64. Y. E. Sayet, and E. P. Yanin, “Geochemical tendencies in the formation of anthropogenic dispersal flows of chemical elements in small rivers,” Methods of Study of Anthropogenic Anomalies (IMGRE, Moscow, 1984), pp. 31–44.

    Google Scholar 

  65. Y. E. Sayet and E. P. Yanin, Methodical Recommendations on the Geochemical Assessment of the Surface Water State (IMGRE, Moscow, 1985) [in Russian].

    Google Scholar 

  66. Y. E. Sayet and E. P. Yanin, “On the complex composition of anthropogenic hydrochemical anomalies,” Vodn. Resurs., No. 2, 135–140 (1991).

  67. Y. E. Sayet, E. P. Yanin, O. G. Grigor’eva, and E. P. Sorokina, “Trace elements in bottom river deposits as indicators of pollution of anthropogenic landscapes,” Geochemical Methods of Monitoring (Nauka Tekhnika, Minsk, 1980), pp. 95–108.

    Google Scholar 

  68. Y. E. Sayet, L. N. Aleksinskaya, and E. P. Yanin, Methodical Recommendations on Geochemical Assessment of Surface Water Pollution by Chemical Elements (IMGRE. Moscow, 1982) [in Russian].

    Google Scholar 

  69. Y. E. Sayet, B. A. Revich, E. P. Yanin, R. S. Smirnova, I. L. Basharkevich, T. L. Onishchenko. L. N. Pavlova, N. Ya. Trefilova, A. I. Achkasov, and S. Sh. Sarkisyan, Environmental Geochemistry (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  70. V. S. Savenko, Chemical Composition of Suspended Debris of the World’s Rivers (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  71. E. P. Sorokina, E. B. Agal’tsova, O. G. Grigor’eva, and Y. E. Saet, “Recognition of geochemical element associations of as method of study of anthropogenic anomalies,” Migration of Pollutants in Soils and Adjacent Media (Gidrometeoizdat, Leningrad, 1980), pp. 91–99 [in Russian].

    Google Scholar 

  72. State Report “On State of the Moscow Environment in 1992” (MTsF ESSO, Moscow, 1993).

  73. N. M. Strakhov, Selected Works (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  74. N. M. Strakhov, N. G. Brodskaya, L. M. Knyazeva, A. N. Razzhivina, M. A. Rateev, D. G. Sapozhnikov, and E. S. Shishova, Formation of Sediments in Modern Basins (AN SSSR, Moscow, 1954) [in Russian].

    Google Scholar 

  75. F. M. Swain, Non-Marine Organic Geochemistry (Cambridge Univ. Press, Cambridge, 1970).

    Google Scholar 

  76. A. Tessier, P. G. C. Campbell, and M. Bisson, “Trace metal speciation in the Yamaska and St.François Rivers (Quebec),” Can. J. Earth Sci. 17 (1), 90–105 (1980).

    Article  Google Scholar 

  77. V. P. Tsyplenkov, “Rapid calorimetric method of determination of humus content in soils and soil solutions,” Pochvovedenie, No. 10, 91–95 (1963).

    Google Scholar 

  78. I. S. Turovskii, Reworking of Effluent Precipitates (Stroiizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  79. G. M. Varshal, I. Ya. Kashcheeva, I. S. Sirotkina, T. K. Velyukhanova, L. N. Intskirveli, and N. S. Zamokina, “Study of organic matter of surface waters and their interaction with metal ions,” Geokhimiya, No. 4, 598–607 (1979).

    Google Scholar 

  80. N. B. Vassoevich, “Main tendencies characterizing organic matter and fossil sediments,” Nature of Organic Matter of the Modern and Fossil Sediments (Nauka, Moscow, 1973), pp. 11–59 [in Russian].

    Google Scholar 

  81. V. I. Vernadsky, Selected Works (AN SSSR, Moscow, 1960), Vol. 4, Book 2.

  82. J. Viers, B. Dupré, and J. Gaillardet, “Chemical composition of suspended sediments in World Rivers: New insights from a new database,” Sci. Total Environ. 407 (2), 853–868 (2009).

    Article  Google Scholar 

  83. A. P. Vinogradov, “Average content of chemical elements in major types of igneous rocks,” Geokhimiya, No. 7, 565–571 (1962).

    Google Scholar 

  84. Yu. A. Voitinskaya, “Decrease of hydraulic resistance of water-transporting pipe lines,” Vodosnabzh. Sanitar. Tekhn., No. 5, 5–8 (1973).

  85. L. K. Yakhontova, and V. P. Zvereva, Principles of Supergene Mineralogy (Dal’nauka, Vladivostok, 2000) [in Russian].

    Google Scholar 

  86. E. P. Yanin, “Specifics of formation of suspended detritus runoff of small rivers under technogenesis conditions,” Recognition of Zones of Environmental Pollution by Toxic Chemical Elements (UDNTP, Chelyabinsk, 1984), pp. 19–20.

    Google Scholar 

  87. E. P. Yanin, “Anthropogenic dispersal flows of chemical elements in the bottom sediments of surface water streams,” Sov. Geologiya, No. 10, 101–109 (1988).

    Google Scholar 

  88. E. P. Yanin, Ecogeochemical Assessment of the Mercury Pollution of the Nura River (IMGRE, Moscow, 1989) [in Russian].

    Google Scholar 

  89. E. P. Yanin, Mercury in the Environment of the Industrial Towns (IMGRE, Moscow, 1992) [in Russian].

    Google Scholar 

  90. E. P. Yanin, “Geochemical features and ecological significance of anthropogenic ooze,” Razvedka Okhr. Nedr, No. 5, 35–37 (1994).

    Google Scholar 

  91. E. P. Yanin, Geochemical Features of Effluent Precipitates of Industrial Town (IMGRE, Moscow, 1996) [in Russian].

    Google Scholar 

  92. E. P. Yanin, Introduction in Ecological Geochemistry (IMGRE, Moscow, 1999) [in Russian].

    Google Scholar 

  93. E. P. Yanin, “Sources and pathways of contaminants in rivers of the industrial–urban areas,” Nauchn. Tekhn. Aspekty Okruzh. Sredy, No. 6, 2–56 (2002a).

    Google Scholar 

  94. E. P. Yanin, Anthropogenic Geochemical Associations in Bottom Sediments of Small Rivers: Composition, Features, and Assessment Methods (IMGRE, Moscow, 2002b) [in Russian].

    Google Scholar 

  95. E. P. Yanin, Anthropogenic River Silt in the Influence Zone of Urban Town: Formation, Composition, and Geochemical Features) (IMGRE, Moscow, 2002c) [in Russian].

  96. E. P. Yanin, Industrial Dust in Urban Environment (Geochemical Features and Evological Assessment) (IMGRE, Moscow, 2003a) [in Russian].

  97. E. P. Yanin, Heavy Metals in Small River in the Influence Zone of Industrial Town (IMGRE, Moscow, 2003b) [in Russian].

    Google Scholar 

  98. E. P. Yanin, Anthropogenic Silt in Rivers of the Moscow Oblast (Geochemical Features and Ecological Assessment) (IMGRE, Moscow, 2004a) [in Russian].

    Google Scholar 

  99. E. P. Yanin, Chemical Composition and Mineralogical Features of Anthropogenic Silt of the Nura River (IMGRE, Moscow, 2004b) [in Russian].

    Google Scholar 

  100. E. P. Yanin, “Change of Chemical composition and anthropogenic metamorphization of river waters in industrial–urban areas,” Nauchn. Tekhn. Asp. Okhr. Okruzh. Sredy, No. 3, 2–27 (2006a).

    Google Scholar 

  101. E. P. Yanin, “Organic pollutants in anthropogenic river ooze,” Nauchn. Tekhn. Asp. Okhr. Okruzh. Sredy, (5), 2–26 (2006b).

  102. E. P. Yanin, “Specifics of mineral composition of channel deposits of the Pakhra River (Moscow oblast) in the anthropogenic influence zones,” Byull. Mosk. O-va Ispyt. Prir. Otd. Geol. 82, (5), 48–55 (2007a).

    Google Scholar 

  103. E. P. Yanin, “Surface runoff from urban lands as a source of river system pollution,” Nauchn. Tekhn. Asp. Okhr. Okruzh. Sredy, No. 4, 2–104 (2007b).

    Google Scholar 

  104. E. P. Yanin, “Formation and geochemical features of anthropogenic river ooze: evidence from the Insar and Alatyr rivers, Mordovia Republic,” Probl. Okruzh. Sredy Prir. Resurs., No. 7, 71–86 (2007c).

  105. E. P. Yanin, “Asbestos in aqueous objects (sources of influx and distributon),” Probl. Okruzh. Sredy Prir. Resurs. No. 11, 77–108. (2008a).

    Google Scholar 

  106. E. P. Yanin, “PGM in the environment (distribution, sources, anthropogenic pollution, recycling),” Nauchn. Tekhn. Aspecty Okhr. Okruzh. Sredy, No. 5, 2–94 (2008b).

    Google Scholar 

  107. E. P. Yanin, “Change of chemical composition of groundwaters under conditions of intense water extraction: evidence from the Saransk deposit,” Otechestvennaya Geol., No. 2, 47–53 (2009a).

  108. E. P. Yanin, “Sediments of urban effluents as a source of the environmental biological pollution,” Ekol. Ekspertiza, No. 2, 48–77 (2009b).

    Google Scholar 

  109. E. P. Yanin, “Specifics of the grain-size composition of channel deposits of small rivers in the influence zone of industrial town,” Izv. Vyssh. Uchebn. Zaved., Geol. Razvedka, No. 3, 69–74 (2009c).

    Google Scholar 

  110. E. P. Yanin, “Distribution of chemical elements in soils of industrial zones,” Probl. Okruzh. Sredy Prir. Resurs., No. 9, 62–69 (2009d).

  111. E. P. Yanin, “Methodical features of study of river alluvium of small rivers under background conditions,” Probl. Okruzh. Sredy Prir. Resurs., No. 4, 32–43 (2011).

  112. E. P. Yanin, “Anthropogenic river silt (composition, geochemical features, and ecological assessment),” Ekol. Ekspertiza, No. 1, 2–196 (2013a).

    Google Scholar 

  113. E. P. Yanin, “Chemical composition and specifics of supply of solid particulate matter in small river with sewage runoff of town,” Nauchn. Tekhn. Asp. Okhr. Okruzh. Sredy, No. 6, 2–16 (2013b).

    Google Scholar 

  114. E. P. Yanin, “Transformation of the group composition of organic matter from the channel deposits of a small river affected by anthropogenic activity,” Geochem. Int. 51 (9), 751–757 (2013c).

    Article  Google Scholar 

  115. E. P. Yanin, “Anthropogenic silt as a secondary source of river water pollution,” Probl. Okruzh. Sredy Prir. Resurs., No. 9, 17–25 (2015).

  116. E. P. Yanin, “Assessment of composition and cation exchange capacity of bottom sediments of small rivers in zones of anthropogenic impact,” Probl. Okruzh. Sredy Prir. Resurs., No. 6, 89–95 (2016a).

  117. E. P. Yanin, “Speciation of heavy metals in anthropogenic river ooze,” Razved. Okhr. Nedr, No. 11, 54–59 (2016b).

    Google Scholar 

  118. E. P. Yanin, “Specifics of behavior of sedimentary material and related chemical elements during purification of effluents on the urban sewage treatment facilities,” Ekol. Ekspertiza, No. 4, 63–69 (2017a).

    Google Scholar 

  119. E. P. Yanin, “Assessment of possible accumulation of anthropogenic radionuclides nonrelated to the nuclear tests and nuclear fuel cycles, in river sediments of the industrial–urban areas,” Ekol. Ekspertiza, No. 6, 14–25 (2017b).

    Google Scholar 

  120. E. P. Yanin, “Industrial sludge (chemical composition, geochemical features, and ecological assessment),” Ekol. Ekspertiza, No. 6, 26–37 (2017c).

    Google Scholar 

  121. E. P. Yanin, Anthropogenic River Silt (Conditions of Formation, Composition, and Geochemical Features) (NP ARSO, Moscow, 2018) [in Russian].

    Google Scholar 

  122. E. P. Yanin, Y. E. Sayet, and L. I. Kashina, “Hydrochemistry of Lake Glubokoe,” Hydrobiologia 141 (1–2), 11–23 (1986).

    Article  Google Scholar 

  123. T. C. Young, M. R. Waltman, T. L. Theis, and J. V. DePinto, “Studies of heavy metal sorption by Trenton Channel (Detroit River) sediments,” Hydrobiologia 235 (1), 649–660 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Yanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanin, E.P. Material Composition and Geochemical Characteristics of Technogenic River Silts. Geochem. Int. 57, 1361–1454 (2019). https://doi.org/10.1134/S0016702919130020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919130020

Keywords:

Navigation