Skip to main content
Log in

Generation Processes and Geochemical Analysis of Simulated Biogenic Coalbed Methane from Lignite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Under laboratory conditions, biogenic CBM generation process from lignites simulated to study the geochemical producing process, as well as the possible generation pathways and mechanisms. Research results indicate that the generation process of biogenic CBM from lignite has at least two gas-generation peaks, and the gas-generation field in the first peak is higher than that in the second peak. During the first gas-generation peak, huminite is considered to be easily degraded by microorganism, while during the second gas-generation peak, liptinite and inertiniteare degraded by methanogens. The compositions of carbon (δ13C1) and hydrogen (δD) isotope in methane show that the simulated bio-methane mainly generates from the pathway of acetic acid fermentation. The concentrations of CH4 and CO2 are mutually increasing and decreasing with the passage of experiment time, and produced CH4 enriched less 13C in the later period, both of which indicates that some CH4 may be from way of carbon dioxide reduction, especially in the end process. When lignite vitrinite reflectance (Ro) value increased, the gas-generation quantities decrease and CH4 concentrations decrease linearly, and there was a trend of decreasing δ13C1 value linearly at the same time. Identify the generation process and geochemical property of biogenic CBM from lignite is crucial to understanding and improving biogenic CBM production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. ASTM Standard D3173–11. Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA (2011a).

  2. ASTM Standard D3175–11. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA (2011b).

  3. ASTM Standard D3174–11. TestMethod for Ash in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA (2011c).

  4. ASTM Standard D5373–08. Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and coke. ASTM International, West Conshohocken, PA (2008).

  5. M. Ahemd and J.W. Smith, “Biogenic methane generation in the degradation of eastern Australian Permian coals,” Org. Geochem. 32, 809–816 (2001).

    Article  Google Scholar 

  6. W. B. Jr. Ayers, “Coalbed gas systems, resources and production and a review of contrasting cases from the San Juan and Powder River basins,” AAPG Bull. 86 (11), 1853–1890 (2002).

    Google Scholar 

  7. B. Cramer, “Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics,” Org. Geochem. 35, 79–39 (2004)2.

    Article  Google Scholar 

  8. Y. Chen, M. Maria, and S. Arndt, “Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy,” Int. J. Coal Geol. 104, 22–33 (2012).

    Article  Google Scholar 

  9. F. Cheng, and Q. Jin, “Composition and isotope fractionations of accumulated natural gas and their significance,” Natural Gas Geosci. 16 (4), 522–525 (2005).

    Google Scholar 

  10. M. Faiz, and P. Hendry, “Significance of microbial activity in Australian coal bed methane reservoirs–a review,” Bull. Can. Petrol. Geol. 54, 261–272 (2006).

    Article  Google Scholar 

  11. P. H. Fallgren, S. Jin, C. Zeng, Z. Ren, A. H. Lu, P. J. S. Colberg, “Comparison of coal rank for enhanced biogenic natural gas production,” Int. J. Coal Geol. 115, 92–96 (2013).

    Article  Google Scholar 

  12. R. M. Flores, C. A. Rice, G. D. Stricker, A. Warden, and M. S. Ellis, “Methanogenic pathways of coal–bed gas in the Power River Basin, United States: the geologic factor,” Int. J. Coal Geol. 76, 52–75 (2008).

    Article  Google Scholar 

  13. H. J. Fu, D. Z. Tang, Xu, T., H. Xu, S. Tao, J. L. Zhao, B. L. Chen, and Z. Y. Yin, “Preliminary research on CBM enrichment models of low-rank coal and its geological controls: a case study in the middle of the southern Junggar Basin, NW China,” Mar. Petrol. Geol. 83, 97—110 (2017).

    Article  Google Scholar 

  14. L. K. Gallagher, A. W. Glossner, L. L. Landkamer, L. A. Figueroa, K. W. Mandernack, and J. M. Marr, “The effect of coal oxidation on methane production and microbial community structure in Powder River Basin coal,” Int. J. Coal Geol. 115, 71–78 (2013).

    Article  Google Scholar 

  15. L. M. Games, and J. M. Hayers, “Methane–producing bacteria: natural fractionation of stable isotopes,” Geochim. Cosmochim. Acta 42, 1295–1297 (1978).

    Article  Google Scholar 

  16. M. S. Green, K. C. Flanegan, and P. C. Gilcrease, “Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A.,” Int. Journal of Coal Geol. 76, 34–45 (2008).

    Article  Google Scholar 

  17. S. H. Harris, R. L. Smith, and C. E. Barker, “Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals,” Int. J. Coal Geol. 76, 46–51 (2008).

    Article  Google Scholar 

  18. Z. Huang, M. A. Urynowicz, and P. J. S. Colberg, “Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate,” Fuel 111, 813–819 (2013).

    Article  Google Scholar 

  19. A. T. James, “Correlation of reservoir gases using the carbon isotopic compositions of wet gases components,” Bull. Am. Assoc. Pet. Geol. 74, 1441–1458 (1990).

    Google Scholar 

  20. E. J. P. Jones, M. A. Voytek, P. D. Warwick, M. D. Corum, A. Cohn, J. E. Bunnell, A. C. Clark, and W. H. Orem, “Bioassay for estimating the biogenic methane-generating potential of coal samples,” Int. J. Coal Geol. 76, 138–150 (2008).

    Article  Google Scholar 

  21. E. J. P. Jones, M. A. Voytek, M. D. Corum, and W. H. Orem, “Stimulation of methane generation from a non-production coal by addition of nutrients or a microbial consortium,” Appl. Environ. Microbial. 76 (21), 7013–7022 (2010).

    Article  Google Scholar 

  22. D. A. Klein, R. M. Flores, C. Venot, K. Gabbert, R. Schmidt, G. D. Stricker, A. Pruden, and K. Mandernack, “Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration,” Int. J. Coal Geol. 76, 3–13 (2008).

    Article  Google Scholar 

  23. M. J. Kotarba, “Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland,” Org. Geochem. 32, 163–180 (2001).

    Article  Google Scholar 

  24. D. Li, P. Hendry, and M. Faiz, “A survey of microbial populations in some Australian coalbed methane reservoirs,” Int. J. Coal Geol. 76, 14–24 (2008).

    Article  Google Scholar 

  25. F. Lorant, A. Prinzhofer, F. Beher, and A. Y. Huc, “Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases,” Chem. Geol. 147, 249–264 (1998).

    Article  Google Scholar 

  26. M. Mastalerz, A. Schimmelmann, G. P. Lis, A. Drobniak, and A. Stankiewicz, “Influence of maceral composition on geochemical characteristics of immature shale kerogen: insight from density fraction analysis,” Int. J. Coal Geol. 103, 60–69 (2012).

    Article  Google Scholar 

  27. D. Mayumi, H. Mochimaru, H. Tamaki, K. Yamamoto, H. Yoshioka, Y. Suzuki, Y. Kamagata, and S. Sakata, “Methane production from coal by a single methanogen,” Science 354 (6309), 222–225 (2016).

    Article  Google Scholar 

  28. S. Miyazaki, “Coalbed methane growing rapidly as Australia gas supply diversifies,” Oil Gas J. 103 (28), 32–36 (2005).

    Google Scholar 

  29. I. Palmer, “Coalbed methane completions: a world view,” Int. J. Coal Geol. 82, 184–195 (2010).

    Article  Google Scholar 

  30. T. J. Penner, J. M. Foght, and K. Budwill, “Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures,” Int. J. Coal Geol. 82 (1/2), 81–93 (2010).

    Article  Google Scholar 

  31. Y. Qin, X. Y. Tang, J. P. Ye, and S.H. Jiao, “Characteristics and origins of stable carbon isotope in coalbed methane of China,” J. China Univ. Mining Technol. 29 (2), 113–119 (2003).

    Google Scholar 

  32. D. D. Rice, “Composition and origins of coalbed gas. Studies in Geology,” Am. Ass. Petrol. Geol. 38, 159–184 (1993).

    Google Scholar 

  33. Y. Santosh, T. R. Sreekrishan, and S. Kohli, “Enhancement of biogas production form solid substrates using different techniques–-a review,” Biores. Technol. 95, 1–10 (2004).

    Article  Google Scholar 

  34. A. R. Scott, “Improving coal gas recovery with microbially enhanced coalbed methane,” Coalbed Methane: Scientific, Environmental and Economic Evaluation (Kluwer, Drodrecht, 1999), pp. 89–110.

  35. R. L. Smith, and S. H. Harris, “Determining the terminal electron-accepting reaction in the saturated subsurface,” Manual of Environmental Microbiology, 3rd Ed., (ASM Press, 2007), 860–871(2007).

    Google Scholar 

  36. D. Strapoc, M. Mastalerz, A. Schimmelmann, A. Drobbiak, and S. Hedges, “Variability of geochemical properties in a microbial dominated coalbed gas system from the eastern margin of the Illinois Basin, USA,” Int. J. Coal Geol. 76, 98–110 (2008).

    Article  Google Scholar 

  37. D. Strapoc, M. Mastalerz, K. Dawson, J. Macalady, A. Callaghan, B. Wawrik, C. Turich, and M. Ashby, “Biogeochemistry of midrobial coal-bed methane,” Annu. Rev. Earth Planet. Sci. 39, 617–656 (2011).

    Article  Google Scholar 

  38. R. Susilawati, S. D. Golding, K. A. Baublys, J. S. Esterle, and S. K. Hamilton, “Carbon and hydrogen isotope fractionation during methanogenesis: A laboratory study using coal and formation water,” Int. J. Coal Geol. 162, 108–122 (2016).

    Article  Google Scholar 

  39. R. S. Tanner, Cultivation of Bacteria and Fungi. Manual of Environmental Microbiology, (American Society for Microbiology Press, Washington D. C., 2002).

    Google Scholar 

  40. R. K. Thauer, “Biochemistry of methanogenesis: a tribute to Marjory Stephenson,” Microbiology, 144 (9), 2377–2406 (1998).

    Article  Google Scholar 

  41. A. Wang, and Y. Qin, “Microbiological characteristics of parent bacteria from brown coal during biogenic coalbed methane generation progress,” J. China Univ. Mining Technol. 40 (6), 888–893 (2011).

    Google Scholar 

  42. A. Wang, Y. Qin, and F. Lan, “Geochemical characteristics and microbial populations of Neogene brown coal from Zhaotong Basin, China,” Envrion. Earth Sci. 68 (6), 1539–1544 (2013).

    Article  Google Scholar 

  43. B. Wawrik, M. Mendivelso, Parisi, J. M. Suflita, I. A. Davidova, C. R. Marks, J. D. V. Nostrand, Y. Liang, J. Zhou, B. J. Huizinga, D. Stropoc, A. V. Callaghan, “Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin,” FEMS Microbiol. Ecol. 81, 26–42 (2012).

    Article  Google Scholar 

  44. P. D. Warwick, Jr., F. C. Breland, and P. C. Hackley, “Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A.,” Int. J. Coal Geol. 76, 119–137 (2008).

    Article  Google Scholar 

  45. S. P. Yoon, J. Y. Jeon, and H. S. Lim, “Stimulation of biogenic methane generation from lignite through supplying an external substrate,” Int. J. Coal 162, 39–44 (2016).

    Article  Google Scholar 

  46. S. P. Yoon, J. Y. Jeon, and H. S. Lim, “Stimulation of biogenic methane generation from lignite through supplying an external substrate,” Int. J. Coal 162, 39–44 (2016).

    Article  Google Scholar 

  47. J. Yun, F. Y. Xu, L. Liu, N. N. Zhong and X. B. Wu, “New progress and future prospects of CBM exploration and development in China,” Int. J. Mining Sci. Technol. 22 (3), 363–369 (2012).

    Article  Google Scholar 

  48. D. Zhang, W. Liu, Q. Liu, and B. Gao, “The influence of coal formation maceral to natural gases carbon isotopic composition and its application,” Nat. Gas Geosci. 16 (6), 792–79 (2005)6.

Download references

Funding

This work is supported by the Fundamental Research Funds for the Central Universities, China, 2015XKZD07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A.K., Shao, P. Generation Processes and Geochemical Analysis of Simulated Biogenic Coalbed Methane from Lignite. Geochem. Int. 57, 1295–1305 (2019). https://doi.org/10.1134/S0016702919120115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919120115

Keywords:

Navigation