Skip to main content
Log in

Radionuclides Distribution and its Sorption Behavior in the Surface Layer of the Kara Sea Bottom Sediments

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The sorption characteristics of the Kara sea bottom sediments were investigated. The sediments were collected during scientific expedition of the R/V Akademik Mstislav Keldysh (Cruise AMK-66). The mineral and fraction composition of the sediments was determined. It has been found that 137Cs is sorbed mainly by an ion exchange mechanism because of the clay minerals presence in sediments. At the same time, 243Am and 90Sr sorbed from seawater by the surface complexation mechanism. It has been established that the sorption kinetics of 243Am, 137Cs, and 90Sr is about 20 hours, 2 hours, and less than an hour, respectively. The Cs and Am sorption isotherms in experiments with sea and deionized water are described by the Henry equation. The Sr behavior in the deionized and sea water is described by the Langmuir and Freindlikh equations, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. A. Aliev, “Sedimentation in the Kara Sea bay,” Fiz. Okeana. Podvod. Tekhnol. Mir Okeana, No. 4, 12–19 (2006).

    Google Scholar 

  2. V. P. Bilashenko and V. A. Sotnikov, “Identification and cataloguing of flood objects as the first step to rehabilitation and opportunity to development of the Arctic Shelf,” Izv. Akad. Nauk. Energetika, no. 2, A98–103 (2013).

  3. D. L. Bish and J. E. Post, “Quantitative mineralogical analysis using the Rietveld full-pattern fitting method,” Am. Mineral. 78, 932–940 (1993).

    Google Scholar 

  4. P. Borretzen and B. Salbu, “Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya,” Sci. Total Environ. 262, 91–102 (2000).

    Article  Google Scholar 

  5. P. Borretzen and B. Salbu, “Fixation of Cs to marine sediments estimated by a stochastic modelling approach,” J. Environ. Radioact. 61, 1–20 (2002).

    Article  Google Scholar 

  6. N. P. Chishikova, E. M. Korobova, V. G. Linnik, and E. S. Chechetko, “Functional significance of petrographic-mineralogical composition of alluvial soils in the distribution and migration of radionuclides in river basins,” Teoret. Prikl. Ekol. Monitoring Antropog.-narushen. Territ., no. 2, 71–77 (2017).

  7. S. V. Churakov “Mobility of Na and Cs on montmorillonite surface under partially saturated conditions,” Environ. Sci. Technol. 47 (17), 9816–9823 (2013).

    Article  Google Scholar 

  8. R. Comans and D. Hockley, “Kinetics of cesium sorption on illite,” Geochim. Cosmochim. Acta 56(3), 1157–1164 (1992).

    Article  Google Scholar 

  9. N. Doebelin and R. Kleeberg, “Profex: a graphical user interface for the Rietveld refinement program BGMN,” J. Appl. Crystallogr. 48 (5), 1573–1580 (2015).

    Article  Google Scholar 

  10. J. R. Eliason, “Montmorillonite exchange equilibria with strontium–sodium–cesium,” Am. Mineral. 51 (1), 324–335 (1966).

    Google Scholar 

  11. A. A. Geodekyan, M. A. Levitan, and E. S. Shelekhova, “Sorption potential of bottom sediments in the Barents and Kara Seas,” Dokl. Earth Sci. 355A (6), 805–808 (1997).

    Google Scholar 

  12. J. Gwynn, A. Nikitin, V. Shershakov, H. Heldal, B. Lind, H. Teien, O. Lind, R. Sidhu, G. Bakke, A. Kazennov, D. Grishin, A. Fedorova, O. Blinova, I. Sværen, P. Liebig, B. Salbu, C. Wendell, E. Strålberg, and A. Rudjordd, “Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Styepovogo Fjord, Novaya Zemlya,” J. Environ. Radioact. 151 (2), 417–426 (2016).

    Article  Google Scholar 

  13. V. V. Krupskaya, A. Yu. Miroshnikov, O. V. Dorzhieva, S. V. Zakusin, I. N. Semenkov and A. A. Usacheva, “Mineral composition of soils and bottom sediments in bays of Novaya Zemlya,” Oceanology 57(1), 215–221 (2017).

    Article  Google Scholar 

  14. V. V. Krupskaya, and S. V. Zakusin, Determination of Soil Composition by X-ray Diffraction. Laboratory Works on Soil Science, Ed. by V. T. Trofimov and V. A. Korolev, 3rd Ed., (Vyssh. Shkola, Moscow, 2017), pp. 1–48 [in Russian].

    Google Scholar 

  15. N. I. Kvasha, S. A. Lavkovskii, V. I. Kobzev, V. N. Sadovnikov, A. B. Pleskov, V. N. Lystsov, S. M. Vakulovsky, V. N. Vavilkin, and O. I. Petrov, “Assessment of influence of radioactive wastes of the Nuclear navy on the radiation environment in the Russian territorial waters,” Ross. Khim. Zh. 45 (5–6), 142–148 (2001).

    Google Scholar 

  16. N. P. Laverov, V. I. Velichkin, A. Yu. Miroshnikov, V. V. Krupskaya, En. E. Asadulin, I. N. Semenkov, A. A. Usacheva, S. V. Zakusin, and E. V. Terskaya, “Geochemical and radiation conditions in coastal landscapes of the Kara Sea Gulf (Novaya Zemlya Archipelago),” Dokl. Earth Sci. 467 (1), 320–324 (2016).

    Article  Google Scholar 

  17. M. A. Levitan, M. V. Bourtman, L. L. Demina, M. Yu. Chudetsky, and F. Schoster, “Facies variability of surface sediments from the Ob–Yenisei shoal and the Ob and Yenisei estuaries,” Lithol. Miner. Resour. 40 (5), 408–419 (2005).

    Article  Google Scholar 

  18. A. Yu. Miroshnikov, N. P. Laverov, R. A. Chernov, A. V. Kudikov, A. A. Ysacheva, I. N. Semenkov, R.  A. Aliev, E. E. Asadulin and M. V. Gavrilo, “Radioecological investigations on the northern Novaya Zemlya Archipelago,” Oceanology 57 (1), 204–214 (2017).

    Article  Google Scholar 

  19. B. Ngouana and A. Kalinichev, “Structural arrangements of isomorphic substitutions in smectites: molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-montmorillonite revisited with new clay models,” J. Phys. Chem. 118 (24), 12 758–12 773 (2014).

    Google Scholar 

  20. D. Oughton, P. Borretzen, B. Salbu, and E. Tronstad, “Mobilisation of 137Cs and 90Sr from sediments: potential sources to arctic waters,” Sci. Total Environ. 202 (1–3), 155–165 (1997).

    Article  Google Scholar 

  21. V. K. Pavlov and S. L. Pfirman, “Hydrographic structure and variability of the Kara Sea: implication for pollutant distribution,” Deep-Sea Research 42 (6), 1369–1390 (1995).

    Article  Google Scholar 

  22. A. A. Sarkisov, V. L. Vystosky, Yu. V. Sivintsev, and V. S. Nikitin, “Problems of radiation rehabilitation of Arctic seas and ways of their solution, Arktika. Ekol. Ekon., No. 1, 70–81 (2011).

  23. V. G. Savonenkov, E. B, Anderson, and S. I. Shabalev, Clays as Geological Environment for Isolation of Radioactive Wastes, (Rosatom, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  24. O. V. Stepanets, A. P. Borisov, A. V. Travkina, G. Y. Solov’eva, M. V. Vladimirov, and R. A. Aliev, “Application of the 210Pb and 137Cs radionuclides in the geochronology of modern sediments at the storage sites of solid radioactive wastes in the Arctic Basin,” Geochem. Int. 48 (4), 398-402 (2010).

    Article  Google Scholar 

  25. A. A. Usacheva, I. N. Semenkov, and A. Yu. Miroshnikov, “Distribution of 137Cs in plants and soils of the background West Siberian tundra and taiga landscapes,” Vestn. Mosk. Univ., Ser. 5. Geogr., No. 6, 87–95 (2016).

  26. A. G. Volosov, V. G. Linnik, E. M. Korobova, V. V. Krupskaya, and J. E. Brown, “Peculiarities of distribution of anthropogenic radionuclides in soils and soil fractions of conjugated floodplain landscapes of the Yenisey River,” Radioprotection (46), 573–577 (2011).

  27. L. A. Vorob’eva, D. V. Ladonin, O. V. Lopukhina, T. A. Rudakova, and A. V. Kiryushin, Chemical Analysis of Soils. Questions and Answers (Moscow, 2011) [in Russian].

    Google Scholar 

  28. V. V. Yyurchenko. A. V. Sviridov, A. F. Nikiforov, A. S. Kutergin, and A. V. Voronin, Concentration of cesium and strontium from water systems by the bentonite clay-based adsorbents,” Butler. Soobshch. 47 (7), 74–82 (2016).

    Google Scholar 

  29. J. M. Zachara, S. C. Smith, Ch. Liu, J. P. McKinley, R. J. Serne, and P. L. Gassman, “Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA,” Geochim. Cosmochim. Acta 66 (2), 199–211 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the participants of expedition АМК-66 and, personally, A. Yu. Miroshnikov, for help and assistance in obtaining bottom sediment samples from the Kara Sea. Researchers from the Radiochemical Department, Chemical Faculty, Moscow State University, and the Belov Laboratory of Crystal Chemistry of Minerals of Insitute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, are thanked for assistance and help at different stages of study.

Funding

This work was performed in the framework of the State Task of the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences (0137-2016-0022). Mineral composition analysis of marine sediments was carried out with the support of the project of the Russian Foundation for Basic Research (18-29-12115-mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuzmenkova.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmenkova, N.V., Krupskaya, V.V., Duriagina, E.V. et al. Radionuclides Distribution and its Sorption Behavior in the Surface Layer of the Kara Sea Bottom Sediments. Geochem. Int. 57, 1213–1220 (2019). https://doi.org/10.1134/S0016702919110041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919110041

Keywords:

Navigation