Skip to main content
Log in

Results of 13C NMR and FTIR Spectroscopy of Kerogen from the Upper Devonian Domanik of the Timan–Pechora Basin

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A series of kerogen samples from organic carbon rich rocks of middle Frasnian–early Famennian age from the Timan–Pechora basin was studied by Rock-Eval pyrolysis, solid-state 13C NMR spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. In addition, we determined the spectral characteristics of kerogen isolated from the Domanikites of the early catagenetic stage artificially matured in an autoclave under hydrous conditions. In general, the trends of transformation of the kerogen structure during natural and experimental maturation are identical. The kerogen subjected to experimental maturation is characterized by an increase in the concentration of terminal methyl groups relative to methylene units. Artificial kerogen maturation results in a more rapid rearrangement of aromatic clusters and accumulation of bridgehead and protonated carbon compared with natural maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. K. Bazhenova, V. K. Shimansky, V. F. Vasil’eva, A. I. Shapiro, L. A. Yakovleva, and L. I. Klimova, Organic Geochemistry of the Timan–Pechora Basin (VNIGRI, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  2. F. Behar, and M. Vandenbroucke, “Chemical modelling of kerogens,” Org. Geochem. 11 (1), 15–24 (1987).

    Article  Google Scholar 

  3. L. I. Bogorodskaya, A. E. Kpontorovich, and A. I. Larichev, Kerogen. Methods of study and Geochemical Interpretation (SO RAS, Geo. Novosibirsk, 2005) [in Russian].

    Google Scholar 

  4. N. S. Burdelnaya, D. A. Bushnev, M. Mokeev, and A. Dobrodumov, “Experimental study of kerogen maturation by solid state 13C NMR spectroscopy,” Fuel 118, 308–314 (2014).

    Article  Google Scholar 

  5. N. S. Burdelnaya, D. A. Bushnev, and M. V. Mokeev, “Study of kerogen transformation by soild-state 13C NMR at natural and artificial maturation of organic matter,” Vestnik IG Komi SC 6 (246), 33–39 (2015).

    Google Scholar 

  6. D. A. Bushnev and N. S. Burdel’naya, “Modeling of oil generation by domanik carbonaceous shale,” Petrol. Chem. 53 (3), 145–151 (2013).

    Article  Google Scholar 

  7. D. A. Bushnev, N. S. Burdel’naya, M. V. Mokeev, and A. V. Gribanov, “Chemical structure and 13C NMR spectra of the kerogen of carbonaceous rock masses,” Dokl. Earth Sci. 430 (2), 210–213 (2010).

    Article  Google Scholar 

  8. D. A. Bushnev, N. S. Burdel’naya, E. S. Ponomarenko, and T. A. Zubova (Kiryukhina), “Anoxia in the domanik basin of the Timan–Pechora Region,” Lithol. Miner. Resour. 51 (4), 283–289 (2016).

    Article  Google Scholar 

  9. D. A. Bushnev, A. N. Plotitsyn, D. A. Gruzdev, and N. S. Burdel’naya, “Organic matter of Fammenian sediments of the southern Chernyshev Range (section along the Iz’yael River),” Neftegaz. Geol. Teor. Praktia 12 (3) (2017). http://www.ngtp.ru/rub/1/26_2017.pdf.

  10. D. A. Bushnev, N. S. Burdelnaya, A. N. Shadrin, and A. A. Derevesnikova, “Domanic sediments of the Denisov trough: evidence from study of core from borehole Komandirshor-12” Vestnik IG Komi SC 7 (271), 12–20 (2017).

    Article  Google Scholar 

  11. D. A. Bushnev. N. S. Burdel’naya, O. V. Valyaeva, and A. A. Derevesnikova, “Geochemistry of Late Devonian oils of the Timan–Pechora Basin,” Russ. Geol. Geophys. 58 (3–4), 332–342 (2017).

    Article  Google Scholar 

  12. X. Cao, A. Chappell, A. Schimmelmann, M. Mastalerz, Y. Li, W. Hu, and J. Mao, “Chemical structure changes in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C NMR spectroscopy,” Int. J. Coal Geol. 108, 53–64 (2013).

    Article  Google Scholar 

  13. P. R. Craddock, T. V. Le Doan, K. Bake, M. Polyakov, A. M. Charsky, and A. E. Pomerantz, “Evolution of kerogen and bitumen during thermal maturation via semi-open pyrolysis investigated by infrared spectroscopy,” Energy Fuels 29, 2197–2210 (2015).

    Article  Google Scholar 

  14. E. M. Faizullina, “Characteristics of amorphous microcomponents of dispersed organic matter (DOM) from IR spectra of debituminized kerogen,” Khimiya Tverdogo Topliva 5, 96–106 (1977).

    Google Scholar 

  15. R. Freeman, Magnetic Resonance in Chemistry and Medicine (Oxford, 2003).

    Google Scholar 

  16. H. Ganz and W. Kalkreuth, “Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials,” Fuel 66, 708–711 (1987).

    Article  Google Scholar 

  17. H. H. Ganz and W. Kalkreuth, “IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics,” J. Asian Earth Sci. 5 (1), 19–28 (1991).

    Article  Google Scholar 

  18. E. A. Glebovskaya, Application of IR Spectrometry in Petroleum Geochemistry (Nedra, Leningrad, 1971) [in Russian].

    Google Scholar 

  19. J. Ibarra, E. Munoz, and R. Moliner, “FTIR study of the evolution of coal structure during the coalification process,” Org. Geochem. 24, 725–735 (1996).

    Article  Google Scholar 

  20. U. Lille, I. Heinmaa, and T. Pehk, “Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra,” Fuel 82, 799–804 (2003).

    Article  Google Scholar 

  21. R. Lin and G. P. Ritz, “Studying individual macerals using IR microspectroscopy, and implications on oil versus gas/condensate proneness and 'low-rank' generation,” Org. Geochem. 20 (6), 695–706 (1993).

    Article  Google Scholar 

  22. G. P. Lis, M. Mastalerz, A. Schimmelmann, M. D. Lewan, and B. A. Stankiewicz, “FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance Ro in type-II kerogens from Devonian black shales,” Org. Geochem. 36, 1533–1552 (2005).

    Article  Google Scholar 

  23. A. L. Mann, R. L. Patience, and I. J. F. Poplett, “Determination of molecular structure of kerogen using C-13 NMR spectroscopy. 1. The effects of variation in kerogen type,” Geochim. Cosmochim. Acta 55, 2259–2268 (1991).

    Article  Google Scholar 

  24. J. D. Mao and K. Schmidt-Rohr, “Recoupled long-range C–H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings,” J. Magn. Reson. 162, 217–227 (2003).

    Article  Google Scholar 

  25. J. Mao, X. Fang, Y. Lan, A. Schimmelmann, M. Mastalerz, L. Xu, and K. Schmidt-Rohr, “Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy,” Geochim. Cosmochim. Acta 74, 2110–2127 (2010).

    Article  Google Scholar 

  26. J.-D. Mao, B. Xing, and K. Schmidt-Rohr, “New structural information on a humic acid from two-dimensional 1H–13C correlation solid-state nuclear magnetic resonance,” Environ. Sci. Technol. 35, 1928–1934 (2001).

    Article  Google Scholar 

  27. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling one and two-dimensional solid-state NMR spectra,” Magn. Reson. Chem. 40, 70–76 (2002).

    Article  Google Scholar 

  28. F. P. Miknis, Z. S. Jiao, and D. B. Macgowan, “Solid-state NMR characterization of Mowry shale from the Power River Basin,” Org. Geochem. 20, 339–347 (1993).

    Article  Google Scholar 

  29. M. Monthioux and P. Landais, “Natural and artificial maturations of a coal series: Infrared spectrometry,” Energy & Fuels 2, 794–801 (1988).

    Article  Google Scholar 

  30. R. L. Patience, A. L. Mann, and T. J. F. Proplett, “Determination of molecular structure of kerogen using C-13 NMR-spectroscopy. 2. The effects of thermal maturation on kerogens from marine-sediments,” Geochim. Cosmochim. Acta 56, 2725–2742 (1992).

    Article  Google Scholar 

  31. K. E. Peters and M. R. Cassa, “Applied source-rock geochemistry,” In: The Petroleum System. From Source to Trap, Ed. by L. B. Magoon and W. G. Dow, (American Association of Petroleum Geologists, Tulsa, 1994), pp. 93–120.

    Google Scholar 

  32. H. I. Petersen, P. Rosenberg, and H. P. Nytoft, “Oxygen groups in coals and alginite-rich kerogen revisited,” Int. J. Coal Geol. 74, 93–113 (2008).

    Article  Google Scholar 

  33. P. G. Rouxhet and P. L. Robin, “Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis,” Fuel 57, 533–540 (1978).

    Article  Google Scholar 

  34. R. J. Smernik, L. Schwark, and M. W. I. Schmidt, “Assessing the quantitative reliability of solid-state 13C NMR spectra of kerogens across a gradient of thermal maturity,” Solid State NMR 29, 312–321 (2006).

    Article  Google Scholar 

  35. N. Takeda and T. Asakawa, “Study of petroleum generation by pyrolysis–I. Pyrolysis experiments by Rock-Eval and assumption of molecular structural change of kerogen using 13C-NMR,” Appl. Geochem. 3 (5), 441–453 (1988).

    Article  Google Scholar 

  36. M. J. Trewhella, I. J. F. Poplett, and A. Grint, “Structure of Green River oil shale kerogen. Determination using solid state 13C NMR spectroscopy,” Fuel 65, 541–546 (1986).

    Article  Google Scholar 

  37. Z. Wei, X. Gao, D. Zhang, and J. Da, “Assessment of thermal evolution of kerogen geopolymers with their structural parameters measured by solid-state 13C NMR spectroscopy,” Energy & Fuels 19, 240–250 (2005).

    Article  Google Scholar 

  38. U. Werne-Zwanziger, G. Lis, M. Mastalerz, and A. Schimmelmann, “Thermal maturity of type II kerogen from the New Albany Shale assessed by C-13 CP/MAS NMR,” Solid State NMR 27, 140–148 (2005).

    Article  Google Scholar 

  39. M. A. Wilson, R. J. Pugmire, J. Karasey, et al., “Carbon distribution in coals and coal macerals by cross polarization magic angle spinning C-13 nuclear magnetic-resonance,” Anal. Chem. 56 (6), 933–943 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bushnev.

Additional information

Translated by A. Girnis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushnev, D.A., Burdel’naya, N.S. & Mokeev, M.V. Results of 13C NMR and FTIR Spectroscopy of Kerogen from the Upper Devonian Domanik of the Timan–Pechora Basin. Geochem. Int. 57, 1173–1184 (2019). https://doi.org/10.1134/S0016702919110028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919110028

Keywords:

Navigation