Skip to main content
Log in

Experimental Modeling of Formation of Native Metals (Fe, Ni, Co) in the Earth’s Crust by the Interaction of Hydrogen with Basaltic Melts

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In continuation of our early works, an experimental study of the kinetics and interaction mechanisms in the hydrogen-basalt melt system at a hydrogen pressure of 100 MPa and temperature of 1250°C carried out. It was found in kinetic experiments that, despite the high reduction potential of the H2-melt system, the hydrogen oxidation reactions and the complete reduction of Fe oxides in the melt do not go to the end. As a result, initially homogeneous basalt melt becomes heterogeneous: H2O is formed in the fluid phase; H2O is dissolved in the basalt melts, and a small metal separation of the liquation structure formed at a temperature significantly lower than the melting temperature of the metal phases (Fe, FeNiCo alloy). The structure and dimensions of the experimentally established metal separations agree well with the natural data on the findings of small amounts of the metal phase, primarily iron and its alloys with nickel and cobalt, reported from magmatic rocks of various compositions and origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Ya. Aranovich, “Fluid-mineral equilibria and thermodynamic mixing properties of fluid systems,” Petrology 21, 539–549 (2013).

    Article  Google Scholar 

  2. I. Barin, Thermochernical Data of Pure Substances, 3rd Ed., (VCH Publishers, New York, 1995).

    Book  Google Scholar 

  3. J. M. Bird, C. A. Goodrick, and M. S. Weathers, “Petrogenesis of Uiviaq iron, Disko Island, Greenland,” J. Geophys. Res. B 86 (12), 11 787–11 806(1981).

    Google Scholar 

  4. N. Galaktionova, Hydrogen in Metals, (Metallurgiya, Moscow, 1967) [in Russian].

    Google Scholar 

  5. E. M. Galimov, “Redox evolution of the Earth caused by a multistage formation of its core,” Earth Planet. Sci. Lett. 233, 263–276 (2005).

    Article  Google Scholar 

  6. A. Gilat and A. Vol, “Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes,” HAIT J. Sci. Eng. B2 (1–2), 125–167 (2005).

    Google Scholar 

  7. Great Tolbachinskii Fissure Eruption 1975-1976, Kamchatka (Nauka, Moscow, 1984) [in Russian].

  8. R. M. Gabidullin and B. A. Kolachev, “On the phase diagrams of the systems metal-hydrogen,” Metallurgy and Casting of Light Alloys (Metallurgy, Moscow, 1977), pp. 32–42 [in Russian].

    Google Scholar 

  9. T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metam. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  10. A. Jambon, “Earth degassing and large scale geochemical cycling of volatile elements,” Rev. Miner. 30, 479–517 (1994).

    Google Scholar 

  11. D. Jana and D. Walker, “Core formation in the presence of various C–H–O volatile species,” Geochim. Cosmochim. Acta 63, 2299–2310 (1999).

    Article  Google Scholar 

  12. M. Javoy, “The birth of the Earth’s atmosphere: the behavior and fate of the major elements,” Chem. Geol. 147, 11–25 (1998).

    Article  Google Scholar 

  13. A. A. Kadik “Degassing of the restored mantle during its melting at different stages of Earth evolution: experimental studies,” Experimental Studies of Endogenous Processes. To the Memory of Academician V. A. Zharikov, Ed. by I. D. Ryabchikov, Yu. B. Shapovalov, and E. G. Osadchii (IPKhF RAS, Chernogolovka, 2008), pp. 15–29 [in Russian].

  14. A. A. Kadik, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko, T. I. Tsekhonya, and N. N. Kononkova, “Solution behavior of C–O–H volatiles in FeO–Na2O–Al2O3–SiO2 melts in equilibrium with liquid iron alloy and graphite at 4 GPa and 1550oC,” Geochem. Int. 52 (9), 707–725 (2014).

    Article  Google Scholar 

  15. A. A. Kadik, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko, T. I. Tsekhonya, and N. N. Kononkova, “Solubility of nitrogen, carbon, and hydrogen in FeO–Na2O–Al2O3–SiO2 melt and liquid iron alloy: influence of oxygen fugacity,” Geochem. Int. 53 (10), 849–868 (2015).

    Article  Google Scholar 

  16. A. A. Kadik, N. A. Kurovskaya, O. A. Lukanin, Yu. A. Ignat’ev, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko and N. N. Kononkova, “Formation of N–C–O–H molecules and complexes in the basalt–basaltic andesite melts at 1.5 GPa and 1400°C in the presence of liquid iron alloys,” Geochem. Int. 55 (2), 151–162 (2017).

    Article  Google Scholar 

  17. D. S. Korzhinsky, Flows of Transmagmatic Solutions and Granitization (Nauka, Mocow, 1972), pp. 144–152 [in Russian].

  18. N. Ah. Kurovskaya, O. A. Lukanin, Yu. A. Ignatiev, N. N. Kononkova, and E. B. Kryukova, “Influence of hydrogen fugacity on the solubility and speciation of N–C–H–O volatiles in basalt melts at 1.5 GPA and 1400°C,” Proceedings of VESEMPG-2018, Ed. by O. A. Lukanin (GEOKHI RAS, Moscow, 2018), pp. 121–124. [in Russian].

  19. Y. A. Kuznetsov and E. P. Izokh, “Geological evidence for intratelluric fluxes of heat and substances as agents of metamorphism and magma formation,” Problems of Petrology and Genetic Mineralogy (Nauka, Moscow, 1969), pp. 7–20 [in Russian].

    Google Scholar 

  20. V. K. Levashov and B. V. Okrugin, “Evaluation of the physical conditions for the formation of segregations of native iron in a basaltic melt,” Geochemistry and Mineralogy of Basites and Ultrabasites of the Siberian Platform, (YaF SO AN SSSR, Yakutsk, 1984), pp. 54–62 [in Russian].

    Google Scholar 

  21. R. W. Luth, B. O. Mysen, and D. Virgo, “Raman spectroscopic study of the solubility behavior of H2 in the system Na2O–Al2O3–SiO2–H2,” Am. Mineral. 72, 481–486 (1987).

    Google Scholar 

  22. A. A. Marakushev, “Nature of native mineral formation,” Dokl. Ross. Akad. Nauk 341 (6), 807–812 (1995).

    Google Scholar 

  23. A. A. Marakushev and S. A. Marakushev, “Origin and fluid evolution of the Earth,” Prostranstvo Vremya, No. 1, 98–118 (2010).

    Google Scholar 

  24. B. O. Mysen, “Relation between structure, redox equlibria of iron, and properties of magmatic liquids,” Physical Chemistry of Magmas, Adv. Phys. Geochem, Ed. by L. L. Perchuk and I. Kushiro (Springer-Verlag, New York, 1991), Vol. 9, pp. 41–98.

  25. O. Narygina, L. S. Dubrovinsky, C. A. McCammon, et al., “X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core,” Earth Planet. Sci. Lett. 307, 409–414 (2011).

    Article  Google Scholar 

  26. “Native metals in igneous rocks,” All-Union Conference. Abstracts, Ed. by B. V. Oleynikov (YaF SO AN SSSR, Yakutsk, 1985) [in Russian].

    Google Scholar 

  27. B. V. Oleynikov A. V. Okrugin, M. D. Tomshin, etc., Native Metal Formation in the Platform Basites, Ed. by V. V. Kovalsky (YaF SO AN SSSR, Yakutsk, 1985) [in Russian].

    Google Scholar 

  28. P. Papale, R. Moretti, and D. Barbato, “The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts,” Chem. Geol. 229, 78–95 (2006).

    Article  Google Scholar 

  29. E. S. Persikov, “Viscosity of model and magmatic melts at the pressures and temperatures of the Earth’s crust and upper mantle,” Russ. Geol. Geophys. 39(11), 1780–1792 (1998).

    Google Scholar 

  30. E. S. Persikov and P. G. Bukhtiyarov, “Unique high gas pressure apparatus to study fluid–melts and fluid–solid–melts interaction with any fluid composition at the temperature up to 1400 oC and at the pressures up to 5 Kbars,” J. Conf. Abs. 7(1), 85 (2002).

    Google Scholar 

  31. E. S. Persikov, and P. G. Bukhtiyarov, “Interrelated structural chemical model to predict and calculate viscosity of magmatic melts and water diffusion in a wide range of compositions and TP parameters of the Earth’s crust and upper mantle,” Russ. Geol. Geophys. 50, 1079–1090 (2009).

    Article  Google Scholar 

  32. E. S. Persikov, P. G. Bukhtiyarov, S. F. Polish, and A. S. Chekhmir, Interaction of hydrogen with magmatic melts, An Experiment in solution of Actual Geological Problems, Ed. by V. A. Zharikov and V. V. Fedkin (Nauka, Moscow, 1986), pp. 48–70 [in Russian].

    Google Scholar 

  33. E. S. Persikov, V. A. Zharikov, P. G. Bukhtiyarov, and S. F. Pol’skoy, “The effect of volatiles on the properties of magmatic melts,” Eur. J. Mineral. 2, 621–642 (1990).

    Article  Google Scholar 

  34. S. I. Popel, A. I. Sotnikov, and V. N. Boronenkov, Theory of Metallurgical Processes (Metallurgy, Moscow, 1989) [in Russian].

    Google Scholar 

  35. K. Righter, “Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles,” Am. Mineral. 100, 1098–1109 (2015).

    Article  Google Scholar 

  36. A. E. Ringwood, “Composition of the core and implications for origin of the Earth,” Geochem. J. 11, 111–135 (1977).

    Article  Google Scholar 

  37. V. V. Ryabov and A. A. Lapkovsky, “Native iron (platinum) ores from the Siberian Platform trap intrusions,” Austral. J. Earth Sci. 57, 707–730 (2010).

    Article  Google Scholar 

  38. V. V. Ryabov, A. L. Pavlov, and G. G. Lopatin, Native Iron in Siberian Traps (Nauka SB RAS, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  39. K. Sakamaki, E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, “Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core,” Phys. Earth Planet. Inter. 174, 192–201 (2009).

    Article  Google Scholar 

  40. A. N. Shapovalov, Theory of Metallurgical Processes (NF NITU MISiS, Novotroitsk, 2015) [in Russian].

  41. D. J. Stevenson, “Hydrogen in the Earth’s core,” Nature 268, 130–131 (1977).

    Article  Google Scholar 

  42. D. J. Stevenson, “Models of the Earth’ core,” Science 214, 611–619 (1981).

    Article  Google Scholar 

  43. H. Sugimoto and Y. Fukai, “Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations,” Acta Metal. Mater. 40 (9), 2327–2336 (1992).

    Article  Google Scholar 

  44. R. Sweeney, “The role of hydrogen in geological processes in the Earth’s interior,” Solid State Ionics 97, 393–397 (1997).

    Article  Google Scholar 

  45. V. I. Vernadsky, Selected Works (Nauka, Moscow, 1960), vol. 4, Pt. 2 [in Russian].

    Google Scholar 

  46. G. W. Wetherill, “Formation of the Earth,” Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990). Q. Williams and R. J. Hemley, “Hydrogen in the deep earth,” Annu. Rev. Earth Planet. Sci., 29, 365–418 (2001).

    Article  Google Scholar 

  47. B. J. Wood, “Hydrogen: an important constituent of the core?” Science, 278, 1727 (1997).

    Article  Google Scholar 

  48. B. J. Wood, M. J. Walter, and J. Wade, “Accretion of the Earth and segregation of its core,” Nature 441, 825–833 (2006).

    Article  Google Scholar 

  49. M. Zinkevich, N. Mattern, A. Handstein, and O. Gutfleisch, “Thermodynamics of Fe–Sm, Fe–H, and H–Sm systems and its application to the hydrogen–disproportionation–desorption–recombination (HDDR) process for the system Fe17 Sm2–H2,” J. Alloys Comp. 339, 118–139 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers O. A. Lukanin and E. B. Lebedev for their valuable comments on the work, which undoubtedly contributed to the improvement of the quality of the article.

Funding

The work was supported by the program no. 19 of the Presidium of the RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Persikov, P. G. Bukhtiyarov, L. Ya. Aranovich, A. N. Nekrasov or O. Yu. Shaposhnikova.

Additional information

This article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persikov, E.S., Bukhtiyarov, P.G., Aranovich, L.Y. et al. Experimental Modeling of Formation of Native Metals (Fe, Ni, Co) in the Earth’s Crust by the Interaction of Hydrogen with Basaltic Melts. Geochem. Int. 57, 1035–1044 (2019). https://doi.org/10.1134/S0016702919100082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919100082

Keywords:

Navigation