Skip to main content
Log in

Synthesis of Minerals and Polymineralic Matrixes for Immobilizing Elements of Radioactive Wastes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A concept of phase and chemical correspondence in the system matrix material–host rock is suggested for methods of storing radioactive wastes in crustal rocks. This principle allows directional synthesis of certain mineral matrixes. Matrix materials, which are solid solutions of minerals for immobilization of alkaline, alkaline-earth, rare-earth elements that are radionuclides, were experimentally synthesized. Data are obtained on properties of some mineral solid solutions and on the possibility of graphite processing into stable matrixes. Methods are suggested for the immobilization and separation of noble metals (components of radioactive wastes) and halogens (Br and I). The paper discusses problems in processing minerals of the glass matrixes (borosilicate and aluminophosphate glasses) into stable crystalline matrix materials, and methods are suggested for processing the glass matrixes into mineral-matrix materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. O. S. Alekseeva and F. Ya. Galakhov, “Region of metastable liquid immiscibility in the Li2O–Na2O–B2O3–SiO2 system,” Phiz. Khim. Stekla 2 (5), 22–35 (1976).

    Google Scholar 

  2. E. A. Asabina, V. I. Pet’kov, A. R. Kotel’nikov, and A. M. Koval’skii, “Synthesis and X-ray Diffraction Study of Ternary Ferrites LaNaMnFeO5 and LaKMnFeO5,” Russ. J. Inorg. Chem. 51 (7) 1066–1071 (2006).

    Google Scholar 

  3. M. E. Brownfield, E. E. Foord, S. J. Sutley, and T. Botinelly, “Kosnarite, KZr2(PO4)3, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine,” Am. Mineral. 78, 653–656 (1993).

    Google Scholar 

  4. F. J. Dickson, H. Mitamura, and T. J. White, “Radiophase development in hot-pressed alkoxide- derived titanate ceramics for nuclear waste stabilization,” J. Am. Ceram. Soc. 72(6), 1055–1059 (1989).

    Article  Google Scholar 

  5. F. Ya. Galakhov and O. S. Alekseeva, Liquid Immiscibility in Glasses (Nauka, Leningrad, 1969) [in Russian].

  6. A. E. Glikin, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (St. Petersburg Univ., St. Petersburg, 1996).

  7. E. N. Gramenitsky, T. I. Shchekina, and V. N. Devyatova, Phase Relations in Fluorine-Bearing Granitic and Nepheline–Syenite Systems and Partitioning of Elements between Phases (Experimental study) (GEOS, Moscow, 2005) [in Russian].

  8. T. G. Kolpakova, A. R. Kotelnikov, and N. I. Suk, “Synthesis of loparite from borosilicate melts,” Proc. All-Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry, Moscow, 2015 (GEOKHI RAN, Moscow, 2015), pp. 388–390 [in Russian].

  9. A. R. Kotelnikov, “Materials as secondary materials for immobilization of radionuclides,” Geoekologiya, No. 6, 3–15 (1997).

    Google Scholar 

  10. A. R. Kotelnikov, M. B. Epelbaum, V. N. Zyryanov, and K. V. Martynov, Concept of phase and chemical correspondence during disposal of highly-active wastes in the rocks, Fourth Annual Scientific–Technical Conference of the Nuclear Society “Nuclear Energy and Safety of Human NE-93”, Nizhnii Novgorod, 1993 (Nizhnii Novgorod, 1993), pp. 970–972 [in Russian].

  11. A. R. Kotelnikov, V. N. Zyryanov, and M. B. Epelbaum, “Concepts of phase and chemical correspondence during disposal of highly-active wastes in the rocks,” Geochemical Problems of Disposal of Radiactive Wastes (Miass, 1994), vol. 18, pp. 83–103 [in Russian].

    Google Scholar 

  12. A. R. Kotelnikov, A. M. Bychkov, V. N. Zyranov, G. M. Akhmedzhanova, and O. T. Gavlina, Phase transformation of zeolite in feldspar: a way to form aluminsilicate matrices for bounding radionuclides,” Geokhimiya, No. 10, 1527–1532 (1995).

    Google Scholar 

  13. A. R. Kotelnikov, G. M. Akhmedzhanova, and V. A. Suvorova, “Minerals and solid mineral solutions as a matrix for radioactive waste immobilization,” Geochem. Int., 37 (2), 163–170 (1999).

    Google Scholar 

  14. A. R. Kotelnikov, A. M. Kovalskii, A. V. Chichagov, A. I. Orlova, and V. I. Pet’kov, “Synthesis and refinement of unit cell parameters for sodium–potassium zirconium–phosphate solid solutions: Na(1–x)KxZr2(PO4)3,” Geochem. Int. 38 (10), 1026–1030 (2000a).

    Google Scholar 

  15. A. R. Kotelnikov, I. V. Ulin, A. M. Koval’skii, A. N. Nekrasov, Z. A. Kotelnikova, A. I. Orlova, and V. I. Pet’kov, “Synthesis and structure of complex orthophosphates of zirconium and alkali elements: 4. Formation and thermodynamic properties of solid solutions in high-temperature aqueous salt systems,” Radiochemistry 42 (4), 356–362 (2000b).

    Google Scholar 

  16. A. R. Kotelnikov, V. A. Suvorova, V. I. Tikhomirova, G. M. Akhmedzhanova, T.A. Desyatova, and A. M. Koval’skii, “Mineral matrix materials for radionuclide immobilization,” Experimental Mineralogy, Some Results at turn of Centuries (Nauka, Moscow, 2004), Vol. 2, pp. 209–240 [in Russian].

    Google Scholar 

  17. K. V. Martynov, G. M. Akhmedzhanova, A. R. Kotelnikov, I. G. Tananaev, and B. F. Myasoedov, “Synthesis and study of structural analogs of kosnarite mineral under hydrothermal conditions,” Radiochemistry 57 (4), 356–365 (2015).

    Article  Google Scholar 

  18. A. I. Orlova, V. N. Zyryanov, A. R. Kotelnikov, T. V. Demarin, and E. V. Rakitina, “Ceramic phosphates of matrix for highly active wastes. Behavior in hydrothermal conditions,” Radiochemistry 35 (6), 120–126 (1993).

    Google Scholar 

  19. A. I. Orlova, V. N. Zyryanov, O. V. Egor’kova, and T. V. Demarin, “Long-term hydrothermal tests of crystalline phosphates of the family NZP,” Radiochemistry 38 (1), 22–32 (1996).

    Google Scholar 

  20. M. J. Plodinec and J. R. Wiley, “Viscosity and electrical conductivity of glass melts as a function of waste composition,” Ceramics in Nuclear Waste Management. Cincinnati, CONF-790420.T.D, Ed. by Chikalla and J. E. Mendel, (Technical Information Center, 1979), pp. 210–212.

  21. A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins, and E. J. Ramm, SYNROC. Radioactive Waste Forms for the Future, Ed. by W. Lutze and R. C. Ewing (1988).

    Google Scholar 

  22. Yu. B. Shapovalov, “Study of behavior of aluminophosphate glass in groundwater at 300°C and 200 atm,” Fourth Annual Scientific-Technilcal Conference of Nuclear Society “Nuclear Energy and Safety of a Human 4 NE-93, Nizhnii Novgorod, 1993 (Nizhnii Novgorod, 1993),Vol. 2, pp. 984–986 [in Russian].

  23. N. I. Suk, “Behavior of ore elements (W, Sn, Ti, and Zr) in layered immiscible silicate–salt systems,” Petrology 5 (1), 23–31 (1997).

    Google Scholar 

  24. N. I. Suk, Liquid Immiscibility in Alkaline Magmatic System (KDu, Universit. Kniga, Moscow, 2017) [in Russian].

  25. N. I. Suk and A. R. Kotelnikov, “Experimental study of loparite formation in complex fluid–magmatic systems,” Dokl. Earth Sci. 419 (4), 463–466 (2008).

    Article  Google Scholar 

  26. N. I. Suk and A. R. Kotelnikov, “Experimental study of phase partitioning of REE REE (La, Ce), Sr, Cs in the aluminophosphate systems in the presence of SiO2 or alumofluoride,” Eksp. Mineral. 2 (2), 245–248 (2014).

    Google Scholar 

  27. N. I. Suk and A. R. Kotelnikov, “Experimental study of REE (La, Ce), Sr, Cs, Ti extraction from borosilicate and aluminophosphate melts by liquid immiscibility method,” Proc. All-Russian Annual Seminar on Experiment. Mineralogy, Petrology, and Geochemistry, Moscow, 2015 (Moscow, GEOKHi RAN, 2015), Vol. 2, pp. 415–419 [in Russian].

  28. N. I. Suk, E. O. Belousova, and A. R. Kotelnikov, “Experimental study of REE (La, Ce), Srm Cs, Ti extraction from borosilicate melts by a method of liquid immiscibility. Russian Conference “Fundamental Aspects of Safe Disposal or RAW in the Geological Formatons, Moscow, 2013 (Granitsa, Moscow, 2013), pp. 136–137 [in Russian].

  29. V. A. Suvorova, N. V. Pertsov, and A. R. Kotelnikov, “Sr-containing float slime ceramics - the final product of biomineral interaction,” Exp. Geosci. 7 (1), 53–54 (1998a).

    Google Scholar 

  30. V. A. Suvorova, A. R. Kotelnikov, and V. N. Zyryanov, “Synthesis and properties of ceramic matrixes for the fixation of radioactive iodine,” Exp. Geosci. 7 (1), 51–53 (1998b).

    Google Scholar 

  31. V. A. Suvorova, N. V. Pertsov, G. M. Akhmedzhanova, and A. R. Kotelnikov, “Ceramic matrices synthesized from flotation slimes with high content of strontium,” Exp. Geosci. 6 (2), 95–97 (1997).

    Google Scholar 

  32. V. A. Suvorova, A. M. Kovalskii, and A. R. Kotelnikov, “Synthesis of phosphate-bearing matrices by the method of metasomatic replacement reactions,” Geochem. Int. 47 (11), 1141–1147 (2009).

    Article  Google Scholar 

  33. V. A. Zharikov, G. P. Zaraisky, M. B. Epelbaum, and A. R. Kotelnikov, “Petrological and geochemical pre-requisites of safe disposal of HAW in deep geological formations,” Fourth Annual Scientific–Technical Conference of the Nuclear Society “Nuclear Energy and Safety of Human NE-93", Nizhnii Novgorod, 1993 (Nizhnii Novgorod, 1993), Vol. 2, pp. 939–941 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Kotelnikov or N. I. Suk.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelnikov, A.R., Akhmedzhanova, G.M., Suk, N.I. et al. Synthesis of Minerals and Polymineralic Matrixes for Immobilizing Elements of Radioactive Wastes. Geochem. Int. 57, 1066–1081 (2019). https://doi.org/10.1134/S0016702919100057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919100057

Keywords:

Navigation