Thermodynamic Modeling of Evaporation Processes of Lunar and Meteorite Substance

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The paper suggests a thermodynamic approach to modeling the evaporation of lunar and meteorite matter. Comparison of the results of model calculations and experimental data demonstrates the high accuracy of the developed approach to description of thermodynamic properties of melts of lunar and meteorite substance and its behavior at evaporation. The observed relations of melt evaporation are consistent with the thermodynamic values characterizing the residual melts.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    C. M. O’D. Alexander, “Exploration of quantitative kinetic models for the evaporation of silicate melts in vacuum and in hydrogen,” Met. Planet. Sci. 36 (2), 255–283 (2001).

  2. 2

    C. M. O’D. Alexander, “Application of MELTS to kinetic evaporation models of FeO-bearing silicate melts,” Met. Planet. Sci. 37 (2), 245–256 (2002).

  3. 3

    M. Allibert, C. Chatillon, and R. Lourtau, “Mise au point d’une technique de mesure d’active par spectrometrie de masse, dans les melanges d’oxides liquides: application au systeme CaO–MgO–Al2O3 a 1960 K,” Rev. Int. Haut. Temp. Refr. 16 (1), 33–37 (1979).

    Google Scholar 

  4. 4

    C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I.-H. Jung, Y.‑B. Kang, C. Melancon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, “FactSage thermochemical software and databases, 2010–2016,” CALPHAD 54, 35–53 (2016).

    Article  Google Scholar 

  5. 5

    R. G. Berman, A Thermodynamic Model for Multicomponent Melts, with Application to the System CaO–MgO–Al 2 O 3 –SiO 2 (Univ. British Columbia, Vancouver, 1983).

    Google Scholar 

  6. 6

    R. G. Berman and T. H. Brown, “A thermodynamic model for multicomponent melts, with application to the system CaO–Al2O3–SiO2,” Geochim. Cosmochim. Acta 48 (4), 661–678 (1984).

    Article  Google Scholar 

  7. 7

    M. W. Chase, “NIST-JANAF themochemical tables,“ J. Phys. Chem. Ref. Data (9), 1–1951 (1998).

  8. 8

    G. Eriksson, “Thermodynamic studies of high temperature equilibria. III. SOLGAS, a computer program for calculating the composition and heat condition of an equilibrium mixture,” Acta Chem. Scand. 25 (7), 2651–2658 (1971).

    Article  Google Scholar 

  9. 9

    B. Fegley and A. G. W. Cameron, “A vaporization model for iron/silicate fractionation in the Mercury protoplanet,” Earth Planet. Sci. Lett. 82 (3–4), 207–222 (1987).

    Article  Google Scholar 

  10. 10

    M. S. Ghiorso and I. S. E. Carmichael, “A regular solution model for met-aluminous silicate liquids: applications to geothermometry, immiscibility, and the source regions of basic magmas,” Contrib. Mineral. Petrol. 71 (4), 323–342 (1980).

    Article  Google Scholar 

  11. 11

    M. S. Ghiorso, “Thermodynamic models of igneous processes,” Ann. Rev. Earth Planet. Sci. 25, 221–241 (1997).

    Article  Google Scholar 

  12. 12

    M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, and V. C. Kress, “The pMELTS: an revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa,” Geochem., Geophys., Geosyst. 3 (5), 1–36 (2002).

    Article  Google Scholar 

  13. 13

    L. Grossman, D. S. Ebel, S. B. Simon, A. M. Davis, F. M. Richter, and N. M. Parsad, “Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation,” Geochim. Cosmochim. Acta 64 (16), 2879–2894 (2000).

    Article  Google Scholar 

  14. 14

    L. Grossman, S. B. Simon, V. K. Rai, M. H. Thiemens, I. D. Hutcheon, R. W. Williams, A. Galy, T. Ding, A. V. Fedkin, R. N. Clayton, and T. K. Mayeda, “Primordial compositions of refractory inclusions,” Geochim. Cosmochim. Acta 72 (12), 3001–3021 (2008).

    Article  Google Scholar 

  15. 15

    J. W. Hastie and D. W. Bonnell, “A predictive phase equilibrium model for multicomponent oxide mixtures. Part II: Oxides of Na–K–Ca–Mg–Al–Si,” High Temp. Sci. 19 (3), 275–306 (1985).

    Google Scholar 

  16. 16

    J. W. Hastie, D. W. Bonnell, and P. K. Schenck, “Development and application of very high temperature mass spectrometry. vapor pressure determinations over liquid refractories,” Pure Appl. Chem. 72 (11), 2111–2126 (2000).

    Article  Google Scholar 

  17. 17

    J. W. Hastie, E. R. Plante, W. S. Horton, and D. W. Bonnell, “Thermodynamic models of alkali-metal vapor transport in silicate systems,” High Temp.–High Press. 14 (6), 669–679 (1982).

    Google Scholar 

  18. 18

    M. A. Ivanova, R. A. Mendybaev, S. I. Shornikov, K. M. Ryazantsev, and G. J. MacPherson, “Evaporation of spinel-rich CAIs melts: a possible link to CH-CB CAIs,” Lunar Planet. Sci. Conf. Abs. 49, #1965 (2018).

  19. 19

    S. Kambayashi and E. A Kato, “Thermodynamic study of (magnesium oxide + silicon dioxide) by mass spectrometry,“ J. Chem. Thermodyn. 15 (6), 701–707 (1983).

    Article  Google Scholar 

  20. 20

    S. Kambayashi and E. A Kato, “Thermodynamic study of (magnesium oxide–silicon dioxide) by mass spectrometry at 1973 K,“ J. Chem. Thermodyn. 16 (2), 241–248 (1984).

    Article  Google Scholar 

  21. 21

    E. K. Kazenas, Thermodynamics of Double Oxide Vaporization (Nauka, Moscow, 2004) [inRussian].

    Google Scholar 

  22. 22

    I. S. Kulikov, “Conditions of congruent vaporization of chemical compounds,” Izv. Akad. Nauk SSSR. Neorg. Mater. 7 (9), 1557–1560 (1971).

    Google Scholar 

  23. 23

    G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, (McGraw-Hill. New York, 1923).

    Google Scholar 

  24. 24

    O. M. Markova, O. I. Yakovlev, G. A. Semenov, and A. N. Belov, “Some general results of experiments on evaporation of natural melts in the Knudsen cell,” Geochem. Int. 24 (11), 1559–1569 (1986).

    Google Scholar 

  25. 25

    R. A. Mendybaev and F. M. Richter, “Chemical and isotopic fractionation during evaporation of synthetic AOA- and FOB-like materials,” Lunar Planet. Sci. Conf. 47, #2929 (2016).

  26. 26

    I. Prigogine and R. Defay, Chemical Thermodynamics. London (Longman, 1954).

    Google Scholar 

  27. 27

    F. M. Richter, P. E. Janney, R. A. Mendybaev, A. M. Davis, and M. Wadhwa, “Elemental and isotopic fractionation of type B CAI-like liquids by evaporation,” Geochim. Cosmochim. Acta 71 (22), 5544–5564 (2007).

    Article  Google Scholar 

  28. 28

    L. Schaefer and B. Fegley, “A thermodynamic model of high temperature lava vaporization on Io,” Icarus 169 (1), 216–241 (2004).

    Article  Google Scholar 

  29. 29

    B. A. Shakhmatkin and M. M. Shultz, “Thermodynamic functions of glass-forming melts of the Na2O–B2O3 system within temperature range from 700 to 1000°C,” Phyz. Khim. Stekla, 4 (3), 271–277 (1978).

    Google Scholar 

  30. 30

    B. A. Shakhmatkin and M. M. Shultz, “Thermodynamic fucntions of glass-forming melts of the Na2O–SiO2 system within the temperature range of 800–1200°C,” Phyz. Khim. Stekla 6 (2), 129–135 (1980).

    Google Scholar 

  31. 31

    B. A. Shakhmatkin and N. M. Vedishcheva “A thermodynamic approach to the modeling of physical properties of oxide glasses,” Glass Phys. Chem. 24 (3), 229–236 (1998).

    Google Scholar 

  32. 32

    S. I. Shornikov, “Thermodynamic properties of CaO–Al2O3 melts,” Exp. Geosci. 11 (1), 57–58 (2003).

    Google Scholar 

  33. 33

    S. I. Shornikov, “Thermodynamic properties of melts of the CaO–SiO2 system,” Proceedings of Research–Practical Conference “Science, Technology, and Production of Silicate Materials: the Present and the Future, (Informatiz. Obraz., Moscow, 2003), Vol. 4, pp. 196–201 [in Russian].

  34. 34

    S. I. Shornikov, “Thermodynamic properties of Al2O3–SiO2 melts,” Exp. Geosci. 12 (1), 15–16 (2004).

    Google Scholar 

  35. 35

    S. I. Shornikov, “Thermodynamic properties of MgO–SiO2 melts,” Exp. Geosci. 13 (1), 56–57 (2006).

    Google Scholar 

  36. 36

    S. I. Shornikov, “Thermodynamic properties of CaO–Al2O3–SiO2 melts,” Exp. Geosci. 14 (1), 35–37 (2007).

    Google Scholar 

  37. 37

    S. I. Shornikov, “Effect of redox conditions on the evaporation of oxide melts in the CaO–MgO–FeO–Al2O3–SiO2 system,” Geochem. Int. 46 (7), 724–729 (2008).

    Article  Google Scholar 

  38. 38

    S. I. Shornikov, “Thermodynamic properties of MgO–Al2O3–SiO2 melts,” Exp. Geosci. 15 (1), 147–149 (2008a).

    Google Scholar 

  39. 39

    S. I. Shornikov, “A thermodynamic investigation of evaporation of oxide melts containing titanium dioxide,” Vestn. Otd. Nauk Zemle 3, (2011). https://doi.org/10.2205/2011NZ000231

  40. 40

    S. I. Shornikov, “Thermodynamic properties of melts in the CaO–TiO2. system,” Proceedings of VESEMPG (GEOKHI RAN, Moscow, 2015), pp. 191–194.

  41. 41

    S. I. Shornikov, “Vaporization coefficients of oxides contained in the melts of Ca–Al-inclusions in chondrites,” Geochem. Int. 53 (12), 1080–1089 (2015).

    Article  Google Scholar 

  42. 42

    S. I. Shornikov, “Thermodynamic properties of melts in the FeO–TiO2. system,” Proceedings of VESEMPG (GEOKHI RAN, Moscow, 2015a), pp. 195–198 [in Russian].

  43. 43

    S. I. Shornikov, “Thermodynamic properties of the CaO–MgO–SiO2 melts,” Exp. Geosci. 22 (1), 40–42 (2016).

    Google Scholar 

  44. 44

    S. I. Shornikov, “Mass spectrometric investigation of evaporation processes of MgAl2O4,” Russ. J. Phys. Chem. A91 (1), 10–16 (2017)

    Google Scholar 

  45. 45

    S. I. Shornikov, “Thermodynamic properties of melts in the FeO–Al2O3 system,” Proceedings of 18th International Conference Physicochemical and Petrophysical Studies in the Earth’s Science (IGEM RAN, Moscow, 2017), pp. 326–329 [in Russian].

  46. 46

    S. I. Shornikov, “Thermodynamic properties of spinel MgAl2O4: a mass spectrometric study,” Russ. J. Phys. Chem. A 91 (2), 287–294 (2017a).

    Article  Google Scholar 

  47. 47

    S. I. Shornikov, “Mass spectrometric study of the thermodynamic properties of spinel solid solutions,” Russ. J. Phys. Chem. A 92 (8), 1447–1456 (2018).

    Article  Google Scholar 

  48. 48

    S. I. Shornikov, “Thermodynamic properties of melts in the FeO–TiO2 system,” Proceedings of 19 th International Conference Physicochemical and Petrophysical Studies in the Earth’s Science (IGEM RAN, Moscow, 2018), pp. 345–348 [in Russian].

  49. 49

    S. I. Shornikov, Thermodynamic properties of melts of the CaO–MgO–Al2O3 system,” Vestn. Otd. Nauk Zemle Ross. Akad. Nauk 3(2011). https://doi.org/10.2205/2011NZ000230

  50. 50

    S. I. Shornikov and I. Yu. Archakov, “Mass spectrometric study of phase relations and vaporization processes in the CaO–SiO2 system,” Glastech. Ber. Glass. Sci. Technol. 73C2, 51–57 (2000).

  51. 51

    S. I. Shornikov and I. Yu. Archakov, “High temperature mass spectrometric study of vaporization processes and thermodynamic properties in the MgAl2O4–SiO2 system,” High Temperature Corrosion and Materials Chemistry III. (The Electrochem. Soc., Pennington, 2001), vol. 2001–12, pp. 322–329.

    Google Scholar 

  52. 52

    S. I. Shornikov, and M. S. Shornikova, “Thermodynamic properties of melts in the Al2O3–TiO2 system,” Proceedings of 19 th International Conference Physicochemical and Petrophysical Studies in the Earth’s Science (IGEM RAN, Moscow, 2018), pp. 349–352 [in Russian].

  53. 53

    S. I. Shornikov and O. I. Yakovlev, “Study of complex molecular species in the gas phase over the CaO–MgO–Al2O3–TiO2–SiO2 system,” Geochem. Int. 53 (8), 690–699 (2015).

    Article  Google Scholar 

  54. 54

    S. I. Shornikov, V. L. Stolyarova, and M. M. Shultz, “High temperature mass spectrometric study of 3Al2O3 · 2SiO2,” Rapid Commun. Mass Spectr. 8 (5), 478–480 (1994).

    Article  Google Scholar 

  55. 55

    S. I. Shornikov, V. L. Stolyarova, and M. M. Shultz, “Mass-spetctrometric study of thermodynamic properties of melts of the CaO–Al2O3–SiO2 system,” Tekhn. Tekhnol. Silicates 3 (1–2), 8–22 (1996).

    Google Scholar 

  56. 56

    S. I. Shornikov, V. L. Stolyarova, and M. M. Shultz, “A mass–spectrometric study of vapor composition and thermodynamic properties of CaO–Al2O3 melts,” Russ. J. Phys. Chem. 71 (1), 19–22 (1997).

    Google Scholar 

  57. 57

    S. I. Shornikov, V. L. Stolyarova, and M. M. Shultz, “Vaporization and the thermodynamic properties of diopside,” Russ. J. Phys. Chem. 71 (2), 174–178 (1997a).

    Google Scholar 

  58. 58

    S. I. Shornikov, I. Yu. Archakov, and M. M. Shultz, “Evaporation and thermodynamic properties of the Al2O3–SiO2 system,” Dokl. Phys. Chem. 364 (4–6), 48–50 (1999).

    Google Scholar 

  59. 59

    S. I. Shornikov, I. Yu. Archakov, and M. M. Shultz, “Thermodynamic properties of the melts, containing titanium dioxide,” Proc. 9th World Conf. on Titanium (CRISM Prometey, St. Petersburg, 2000), Vol. 3, pp. 1469–1473.

  60. 60

    M. M. Shultz and S. I. Shornikov, “Mass spectrometric study of the thermodynamic properties of calcium aluminate melts,” Dokl. Phys. Chem. 340 (1–3), 17–19 (1995).

    Google Scholar 

  61. 61

    V. L. Stolyarova, S. I. Shornikov, G. G. Ivanov, and M. M. Shultz, “High temperature mass spectrometric study of thermodynamic properties of the CaO–SiO2 system,” J. Electrochem. Soc. 138 (12), 3710–3714 (1991).

    Article  Google Scholar 

  62. 62

    J. Wang, A. M. Davis, R. N. Clayton, T. K. Mayeda, and A. Hashimoto, “Chemical and isotopic fractionation during the evaporation of the FeO–MgO–SiO2–CaO–Al2O3–TiO2 rare earth element melt system,” Geochim. Cosmochim. Acta 65 (3), 479–494 (2001).

    Article  Google Scholar 

  63. 63

    O. I. Yakovlev, Yu. P. Dikov, and M. V. Gerasimov, “Differentiation caused by impact-induced vaporization during the Earth’s accretion,” Geochem. Int. 38 (10), 937–954 (2000).

    Google Scholar 

  64. 64

    A. I. Zaitsev, N. A. Arutyunyan, N. G. Shaposhnikov, N. E. Zaitseva, and V. T. Burtsev, “Experimental study and modeling of the thermodynamic properties of magnesium silicates,” Russ. J. Phys. Chem. 80 (3), 335–344 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks O.I. Yakovlev (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) for continuous interest and fruitful discussions when this paper was written. M.A. Nazarov (same institute) is thanked for supporting this research. This study was financially supported by Program 7 “Experimental and Theoretical Studies of Objects in the Solar System and the Planetary Systems of Stars. Transitional Processes in Astrophysics” of the Presidium of the Russian Academy of Sciences and by the Russian Foundation for Basic Research, project no. 19-05-00801A.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. I. Shornikov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shornikov, S.I. Thermodynamic Modeling of Evaporation Processes of Lunar and Meteorite Substance. Geochem. Int. 57, 865–872 (2019). https://doi.org/10.1134/S001670291908010X

Download citation

Keywords:

  • thermodynamics of melt evaporation
  • Ca–Al inclusions of chondrites