Shock-Wave Experiment with the Chelyabinsk LL5 Meteorite: Experimental Parameters and the Texture of the Shock-Affected Material


A spherical geometry shock experiment with the light-colored lithology material of the Chelyabinsk LL5 ordinary chondrite was carried out. The material was affected by shock and thermal metamorphism whose grade ranged from initial stage S3-4 to complete melting. The temperature and pressure were estimated at >2000°С and >90 GPa. The textural shock effects were studied by optical and electron microscopy. A single experimental impact has produced the whole the range of shock pressures and temperatures and, correspondingly, four zones identified by petrographic analysis: (1) a melt zone, (2) a zone of melting silicates, (3) a black ring zone, and (4) a zone of weakly shocked initial material. The following textural features of the material were identified: displacement of the metal and troilite phases from the central melt zone; the development of a zone of mixed lithology (light-colored fragments in silicate melt); the origin of a dark-colored lithology ring; and the generation of radiating shock veinlets. The experimental sample shows four textural zones that correspond to the different lithology types of the Chelyabinsk LL5 meteorite found in fragments of the meteoritic shower in the collection at the Ural Federal University. Our results prove that shock wave loading experiment can be successfully applied in modeling of space shocks and can be used to experimentally model processes at the small bodies of the solar system.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    D. D. Badyukov, J. Raitala, P. Kostama, and A.V. Ignatiev, “Chelyabinsk meteorite: shock metamorphism, black veins and impact melt dikes, and the Hugoniot,” Petrology 23 (2), 103–115 (2015).

    Article  Google Scholar 

  2. 2

    N. S. Bezaeva, D. D. Badjukov, P. Rochette, J. Gattacceca, V. I. Trukhin, E. A. Kozlov, and M. Uehara, “Experimental shock metamorphism of the L4 ordinary chondrite Saratov induced by spherical shock waves up to 400 GPa,” Meteorit. Planet. Sci. 45 (6), 1007–1020 (2010).

    Article  Google Scholar 

  3. 3

    I. A. Danilenko and E. V. Petrova, Nature of darkening of meteorite matter,” Proceedings of 5th Conference of Youth Scientists with International Participation “Meteorites. Asteroids. Comets, Yekaterinburg, Russia, 2017, (Fort Dialog-Iset, Yekaterinburg, 2017), pp. 48–51 [in Russian].

  4. 4

    E. M. Galimov, V. P. Kolotov, M. A. Nazarov, Yu. A. Kostitsyn, I. V. Kubrakova, N. N. Kononkova, I. A. Roshchina, V. A. Alexeev, L. L. Kashkarov, D.D. Badyukov, and V. S. Sevast’yanov, “Analytical results for the material of the Chelyabinsk meteorite,” Geochem. Int. 51, 522–539 (2013).

    Article  Google Scholar 

  5. 5

    V. I. Grokhovsky, E. A. Kozlov, M. S. Kuzina, V. M. Gundyrev, and V. A. Teplov, “Shock experiment in spherical waves with iron meteorites,” Meteorit. Planet. Sci. 34 (S4), A48 (1999).

    Google Scholar 

  6. 6

    V. I. Grokhovsky, E. A. Kozlov, M. S. Kuzina, and V. A. Teplov, “Shock experiment in spherical waves with iron meteorites,” Meteorit. Planet. Sci. 35 (S5), A66 (2000).

    Google Scholar 

  7. 7

    V. I. Grokhovsky, E. A. Kozlov, R. F. Muftakhetdinova, and E. V. Petrova, “Spherical shock experiments with Chelyabinsk meteorite: experiment setup and insight into results,” Meteorit. Planet. Sci. 53 (S1), 6347 (2018).

    Google Scholar 

  8. 8

    D. Kaeter, M. A. Ziemann, U. Böttger, I. Weber, L. Hecht, S. A. Voropaev, A. V. Korochantsev, and A. V. Kocherov, “The Chelyabinsk meteorite: new insights from a comprehensive electron microscopy and Raman spectroscopy study with evidence for graphite in olivine of ordinary chondrites,” Meteorit. Planet. Sci. 53 (3), 416–432 (2018).

    Article  Google Scholar 

  9. 9

    T. Kohout, M. Gritsevich, V. I. Grokhovsky, G. A. Yakovlev, J. Haloda, P. Halodova, R. M. Michallik, A. Penttilä, and K. Muinonen, “Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite—insight into shock induced changes in asteroid regoliths,” Icarus 228, 78–85 (2014).

    Article  Google Scholar 

  10. 10

    T. Kohout, E. V. Petrova and V. I. Grokhovsky, “Spherical shock experiments with Chelyabinsk meteorite: change in reflectance spectra with increasing shock,” Meteorit. Planet. Sci. 53 (S1), 6327 (2018a).

    Google Scholar 

  11. 11

    T. Kohout, E. V. Petrova, and V. I. Grokhovsky, “Spherical shock experiments with Chelyabinsk meteorite: reflectance spectra changes with increasing shock,” EPSC Abstracts 12, 827 (2018b).

    Google Scholar 

  12. 12

    E. A. Kozlov and A. V. Zhukov, “Phase transitions in spherical stress waves,” High Pressure Science and Technology, Ed. by S. C. Schmidt, J. W. Shaner, G.A. Samara, and M. Ross (American Institute of Physics, New York, 1994), pp. 977–980.

    Google Scholar 

  13. 13

    E. A. Kozlov, A. A. Degtyarev, A. V. Ol’khovsky, O. V. Tkachev, D. A. Varfolomeev, and E. N. Shchukin, “Spherical explosive experiments on crimping with preservation of fragments of the Chelyabinsk and Tsarev meteorites. Main results of microtomographic studies,” Proceedings of 17th Kharitonov Scientific Readings, Sarov, Russia, 2015 (Sarov, 2015) [in Russian].

  14. 14

    A. A. Maksimova, E. V. Petrova, A. V. Chukin, A. S. Vokhmintsev, V. I. Grokhovsky, I. A. Weinstein, V. A. Semionkin, and M. I. Oshtrakh, “Spectroscopic study of Chelyabinsk LL5 meteorite: structural peculiarities of iron–bearing minerals in different fragments,” Proceedings of the 8 European Conference on Mineralogy and Spectroscopy Rome, Italy, 2015, Ed. by G. B. Andreozzi and F. Bosi, (Universita Di Roma, Rome, 2015), pp. 115–116.

  15. 15

    L. F. Migdisova and N. N. Kononkova, “Pervomaiskii chondrite: petrology and imact metamorphism,” Meteoritika 48, 18–21 (1988).

    Google Scholar 

  16. 16

    R. F. Muftakhetdinova, E. V. Petrova, G. A. Yakovlev, and V. I. Grokhovsky, “The structural changes in ordinary chondrite Tsarev L5 after shock wave loading,” Meteorit. Planet. Sci. 52 (SI), A247 (2017).

  17. 17

    R. F. Muftakhetdinova, V. I. Grokhovsky, and G. A. Yakovlev, “Analysis of structural changes and phase transformations in Sikhote–Alin IIAB iron meteorite under various origin shock deformation,” Lett. Mater. 8 (1), 54–58 (2018).

    Article  Google Scholar 

  18. 18

    M. I. Oshtrakh, E. V. Petrova, V. I. Grokhovsky, and V. A. Semionkin, “Characterization of a Chelyabinsk LL5 meteorite fragment using Mössbauer spectroscopy with a high velocity resolution,” Hyperfine Interact 226, 559–564 (2014).

    Article  Google Scholar 

  19. 19

    M. I. Oshtrakh, A. A. Maksimova, Z. Klencsár, E. V. Petrova, V. I. Grokhovsky, E. Kuzmann, Z. Homonnay, and V. A. Semionkin, “Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution,” J. Radioanal. Nucl. Chem. 308, 1103–1111 (2016).

    Article  Google Scholar 

  20. 20

    E. V. Petrova, and V. I. Grokhovskii, “Formation of structure of the Chelyabinsk meteorite,” Minerals: Structure, Properties, and Methods of Studies. Proceedings of 8th All-Russian Youth Conference, Yekaterinburg, Russia, 2016 (Al’fa Print, Yekaterinburg, 2016), pp. 135–136 [in Russian].

  21. 21

    E. V. Petrova, and V. I. Grokhovskii, “Structural changes in the Chelyabinsk LL5 chondrite under thermal and impact effect,” Proceedings of 5th Conference of Youth Scientists with International Participation Meteorites. Asteroids. Comets, Yekaterinburg, Russia, 2017 (Fort Dialog-Iset, Yekaterinburg, 2017), pp. 132–135 [in Russian].

  22. 22

    E. V. Petrova, V. I. Grokhovsky, and R. F. Muftakhetdinova, “Heat treatment of the different structure zones in the Chelyabinsk meteorite,” Meteorit. & Planet. Sci. 51 (SI) A513 (2016).

  23. 23

    O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Yu. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov,

  24. 24

    K. P. Righter, Abell, D. Agresti, E. L. Berger, A. S. Burton, J. S. Delaney, M. D. Fries, E. K. Gibson, M. K. Haba, R. Harrington, G. F. Herzog, L. P. Keller, D. Locke, F. N. Lindsay, and T. J. Mccoy, “Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body,” Meteorit. Planet. Sci. 50 (10), 1790–1819 (2015).

    Article  Google Scholar 

  25. 25

    D. Stoffler, N. A. Artemieva, K. Wunnemann, W. U. Reimold, J. Jacob, B. K. Hansen, and I. A. T. Summerson, “Ries crater and suevite revisited–Observations and modeling Part I: Observations,” Meteorit. & Planet. Sci. 48 (4), 515–589 (2013).

    Article  Google Scholar 

  26. 26

    D. Stoffler, K. Keil, and E. R. D. Scott, “Shock metamorphism of ordinary chondrites,” Geochim. Cosmochim. Acta 55 (12), 3845–3867 (1991).

    Article  Google Scholar 

  27. 27

    M. Trieloff, E. V. Korochantseva, A. I. Buikin, J. Hopp, M. A. Ivanova, and A. V. Korochantsev, “The Chelyabinsk meteorite: thermal history and variable shock effects recorded by the 40Ar-39Ar system,” Meteorit. & Planet. Sci. 53 (3), 343–358 (2017).

    Article  Google Scholar 

  28. 28

    Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, et al., “Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342 (6162), 1069–1073 (2013).

    Article  Google Scholar 

  29. 29

    N. I. Zaslavskaya, L. F. Migdisova, and E. Ya. Shcherbakovskii, “Chemical composition of chromite and ilmenite in the Tsarev imact-metamorphosed chondrite,” Meteoritika 43, 93–97 (1984).

    Google Scholar 

Download references


This study was financially supported by he Ministry of Education and Science of the Russian Federation (project nos. 5.3451.2017/4.6 and 5.4825.2017/6.7), Act 211 of the Government of the Russian Federation, Agreement 02.A03.21.0006, and the Russian Foundation for Basic Research, project no. 18-38-00598, and the Finnish Academy of Sciences project no. 293975.

Author information



Corresponding author

Correspondence to E. V. Petrova.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.V., Grokhovsky, V.I., Kohout, T. et al. Shock-Wave Experiment with the Chelyabinsk LL5 Meteorite: Experimental Parameters and the Texture of the Shock-Affected Material. Geochem. Int. 57, 923–930 (2019).

Download citation


  • Chelyabinsk meteorite
  • ordinary chondrite
  • shock experiment
  • spherical shock
  • texture
  • structure
  • shock metamorphism