Liquid Immiscibility in Regions of Localized Shock-Induced Melting in the Elga Meteorite

Abstract—The regions of localized shock melting (melt pockets) in one of silicate inclusions in IIE Elga iron meteorite were investigated with EMPA, SEM, TEM and Raman spectroscopy. It has been established that the mechanism of formation of melt pockets in Elga is of a mixed nature, being associated not only with melting in situ of the silicate matrix, but also with the intrusion of portions of the melted schreibersite–oxide rim into the silicate inclusion. Melt pockets have an emulsion texture, which is a sign of phase separation by liquid immiscibility in high-temperature shock melts. The emulsion texture formed by droplet-shaped exsolutions of siderite in the schreibersite matrix of one of the melt pockets has all the features of phase separation by liquid immiscibility at superliquidus temperatures. This convincingly indicates the extraterrestrial origin of siderite in the Elga meteorite.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1.

    Impact resistance (impedance) is a shock wave velocity multiplied by the density.

  2. 2.

    FeO* means that the valent state of iron in oxide was not determined.

  3. 3.

    Element composition is given in at %.

  4. 4.

    Temperature of SiO2 melting at normal pressure of 1710°С.


  1. 1

    M. Ebert, L. Hecht, A. Deutsch, T. Kenkmann, R. Wirth, and J. Berndt “Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact,” Geochim. Cosmochim. Acta 133, 257–279 (2014).

    Article  Google Scholar 

  2. 2

    A. Fazio, M. D’Orazio, C. Cordie, and L. Folco, “Target-projectile interaction during impact melting at Kamil crater, Egypt,” Geochim. Cosmochim. Acta 180, 33–50 (2016).

    Article  Google Scholar 

  3. 3

    C. Hamann, L. Hecht, M. Ebert, and R. Wirth, “Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia,” Geochim. Cosmochim. Acta 121, 291–310 (2013).

    Article  Google Scholar 

  4. 4

    C. Hamann, A. Fazio, M. Ebert, L. Hecht, R. Wirth, L. Folco, A. Deutsch, and W. U. Reinold, “Silicate liquid immiscibility in impact melts,” Meteorit. Planet. Sci. 53, 1594–1632 (2018).

    Article  Google Scholar 

  5. 5

    N. Heider and T. Kenkmann, “Numerical simulation of temperature effects at fissures due to shock loading,” Meteorit. Planet. Sci. 38, 1451–1460 (2003).

    Article  Google Scholar 

  6. 6

    T. Kenkmann, U. Hornemann, and D. Stӧffler, “Experimental generation of shock-induced pseudotachyllites,” Meteorit. Planet. Sci. 35, 1275–1290 (2000).

    Article  Google Scholar 

  7. 7

    N. R. Khisina and R. Wirth, “Chemical and phase heterogeneity of Ti–Fe–Mn–silica microspherules in crushed ore samples,” Geochem. Int. 49 (11), 1111–1119 (2011).

    Article  Google Scholar 

  8. 8

    N. R. Khisina, D. D. Badyukov, and R. Wirth, “Microstructure, nanomineralogy and local chemistry of cryptocrystalline cosmic spherules,” Geochem. Int. 54 (1), 68–77 (2016).

    Article  Google Scholar 

  9. 9

    N. R. Khisina, S. N. Teplyakova, R. Wirth, V. G. Senin, A. A. Averin, and A. A. Shiryaev, “Carbon-bearing phases in shock-induced melt zones of the Elga meteorite,” Geochem. Int. 55 (4), 317–329 (2017a).

    Article  Google Scholar 

  10. 10

    N. R. Khisina, A. A. Burmistrova, A. A. Shiryaev, A. A. Averin, V. G. Senin, and N. G. Zinov’eva, “Impact effects in the Elga iron meteorite with silicate inclusions (IIE group),” Proceedings of 18th International Conference “Physicochemical and Petrophysical Studies in the Earth’s Science, (IGEM RAN, Moscow, 2017b), p. 284 [in Russian].

  11. 11

    N. R. Khisina, R. Wirth, A. Burmistrov, A. A. Shiryaev, A. A. Averin, N. G. Zinovieva, E. Pankrushina, and A. M. Abdrakhimov, “Shock-produced siderite in IIE iron meteorite Elga: a secondary mineral of extraterrestrial origin,” Meteorit. Planet. Sci. 53(S1), 133 (2018).

    Google Scholar 

  12. 12

    S. W. Kiefer, “From regolith to rock by shock,” The Moon 13, 301–320 (1975).

    Article  Google Scholar 

  13. 13

    C. R. Kuchka, C. D. K. Herd, E. L. Walton, Y. Guan, and Y. Liu, “Martian low-temperature alteration minerals in shock melt pockets in Tissint: constraints on their preservation in shergottite meteorites,” Geochim. Cosmochim. Acta 210, 228–246 (2017).

    Article  Google Scholar 

  14. 14

    L. G. Kvasha, Yu. Terent’eva, and N. V. Sobolev, “Silicate inclusions and impact metamorphism in he Elga meteorite, Meteoritika 33, 143–147 (1974).

    Google Scholar 

  15. 15

    O. V. Mazurin and E. A. Porai-Koshits, “The structure of phase-separated glasses,” Phase Separation in Glass, Ed. by O. V. Mazurin and E. A. Porai-Koshits (Elsevier Science Publishing Company Inc., Amsterdam, 1984), pp. 163–200.

    Google Scholar 

  16. 16

    Eu. G. Osadchii, G. V. Baryshnikova, and G. V. Novikov, “The Elga meteorite: silicate inclusions and shock metamorphism,” Proc. Lunar Planet. Sci. 12B, 1049–1068 (1981).

  17. 17

    L. N. Plyashkevich, “Some data on the composition and texture of the Elga iron meteorite,” Meteoritika 22, 51–60 (1962).

    Google Scholar 

  18. 18

    A. Ruzicka, “Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies,” Chem. Erde 74, 3–48 (2014).

    Article  Google Scholar 

  19. 19

    V. G. Senin, N. G. Zinov’eva, E. A. Pankrushina, A. A. Averin, and N. R. Khisina, “Identification of minerals in impact melting domains of the Elga meteorite,” Proceedings of All-Russian Annual Seminar on the Experimental Mineralogy, Petrology, and Geochemistry, Ed. by O. A. Lukanin (GEOKHI RAS, Moscow, 2018), pp. 356–359.

  20. 20

    T. G. Sharp and P. S. DeCarli, “Shock effects in meteorites,” Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween, (Univ. of Arizona Press, Tuscon, 2006), pp. 653–677.

  21. 21

    J. E. Shelby, Introduction to Glass Science and Technology, 2nd ed. (Royal Society of Chemistry, Cambridge, 2005).

    Google Scholar 

  22. 22

    M. P. Shepilov, A. E. Kalmykov, and G. A. Sycheva, “Liquid–liquid phase separation in sodium borosilicate glass: ordering phenomena in particle arrangement,” J. Non-Cryst. Solids 353, 2415–2430 (2007).

    Article  Google Scholar 

  23. 23

    D. Stöffler, K. Keil, and E. R. D. Scott, “Shock metamorphism of ordinary chondrites,” Geochim. Cosmochim Acta 55 (12), 3845–3867 (1991).

    Article  Google Scholar 

  24. 24

    D. Stöffler, C. Hamann, and K. Metzler, “Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification,” Meteorit. Planet. Sci. 53, 5–49 (2018).

    Article  Google Scholar 

  25. 25

    S. N. Teplyakova, K. A. Lorentz, M. A. Ivanova, N. N. Kononkova, M. O. Anosova, K. M. Ryazantzev, and Yu. A. Kostitzin, “Mineralogy of silicate inclusions in IIE iron meteorite Elga,” Geochem. Int. 56(1), 1–23 (2018).

    Article  Google Scholar 

  26. 26

    S. N. Teplyakova, N. R. Khisina, and A. L. Vasil’ev, “Nanomineralogy of dendritic inclusion in the Elga iron meteorite,” Zap. Ross. Mineral. O-va 141 (2), 42–52 (2012).

    Google Scholar 

  27. 27

    A. G. Tomkins, R. F. Weinberg, B. F. Schaefer, and A. Langendam, “Disequilibrium melting and melt migration driven by impacts: implications for rapid planetesimal core formation,” Geochim. Cosmochim. Acta 100, 41–59 (2013).

    Article  Google Scholar 

  28. 28

    N. Van Roosbroek, C. Hamann, S. McKibbin, A. Greshake, R. Wirth, L. Pittarello, L. Hecht, P. Claeys, and V. Debaille, “Immiscible silicate liquids and phosphoran olivine in Netschaevo IIE silicate: analogue for planetesimal core-mantle boundaries,” Geochim. Cosmochim. Acta 197, 378–395 (2017).

    Article  Google Scholar 

  29. 29

    I. V. Veksler, A. M. Dorfman, A. A. Borisov, R. Wirth, and D. B. Dingwell, “Liquid immiscibility and the evolution of basaltic magma,” J. Petrol. 48, 2187–2210 (2007).

    Article  Google Scholar 

  30. 30

    E. L. Walton and C. S. J. Shaw, “Understanding the textures and origin of shock melt pockets in Martian meteorites from petrographic studies, comparisons with terrestrial mantle xenoliths, and experimental studies,” Meteorit. Planet. Sci. 44, 55–76 (2009).

    Article  Google Scholar 

  31. 31

    E. L. Walton and J. G. Spray, “Mineralogy, microtexture, and composition of shock-induced melt pockets in the Los Angeles basaltic shergottite,” Meteorit. Planet. Sci. 38, 1865–1875 (2003).

    Article  Google Scholar 

  32. 32

    M. Zolenski, V. S. Kamenetsky, J. A. Mavrogenes, A. A. Gurenko, and L. V. Danyushevsky, “Silicate–sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts,” Chem. Geol. 478, 102–111 (2018).

    Article  Google Scholar 

Download references


We are grateful to A. Burmistrov and E. A. Pankrushina for help in the performance of SEM and Raman spectroscopic studies. K. A. Lorenz is thanked for constructive review.


The work is partially supported by the Presidium of the Russian Academy of Sciences (program no. 28).

Author information



Corresponding authors

Correspondence to N. R. Khisina or R. Wirth or A. M. Abdrakhimov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khisina, N.R., Wirth, R. & Abdrakhimov, A.M. Liquid Immiscibility in Regions of Localized Shock-Induced Melting in the Elga Meteorite. Geochem. Int. 57, 903–911 (2019).

Download citation


  • IIE iron meteorites
  • melt pockets
  • shock melting
  • liquid immiscibility
  • meteorite Elga
  • siderite