Phosphorus-bearing Olivines of Lunar Rocks: Sources and Localization in the Lunar Crust

Abstract—Fragments of P-bearing olivine have been studied in lunar highland, mare, and mingled meteorites and in “Apollo-14”, “Luna-16, -20, -24” lunar samples. The olivines contain up to 0.5 wt % P2O5 and have variable MG# numbers. They are associated with anorthite, pyroxene, and accessory spinel-group minerals, Ti and Zr oxides, phosphates, troilite, and Fe–Ni metal. Three possible sources of P-bearing olivine were found in the lunar material: 1) highland anorthositic–noritic–troctolitic rocks enriched in incompatible elements and interpreted to be related to high-Mg suite rocks: 2) late-stage products of mare basalts crystallization; and 3) unusual olivine–orthopyroxene intergrowths of meteoritic or lunar origin. Enrichment in incompatible elements may result from both crystallization processes (source 2) and KREEP assimilation (sources 1 and 3). However, superimposed metasomatic processes can lead to some addition of phosphorus and other elements. The rarity of P-bearing olivines points either to the low abundance or local distribution of their sources in the lunar crust. Association with mare basalts specifies the highland–mare boundary. The presence of evolved rocks in the studied breccias suggests a possible connection of some sources with recently discovered granitic domes in Procellarum Ocean. This means the P-bearing sources are mainly localized on the nearside of the Moon.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. 1

    M. Anand, L. A. Taylor, K. C. Misra, S. I. Demidova, and M. A. Nazarov, “KREEPy lunar meteorite Dhofar 287A: a new lunar mare basalt,” Meteorit. Planet. Sci. 38 (4), 485–499 (2003).

    Article  Google Scholar 

  2. 2

    V. Batanova, A. V. Sobolev, and D. V. Kuzmin, “Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser,” Chem. Geol. 419, 149–157 (2015).

    Article  Google Scholar 

  3. 3

    V. Batanova, A. V. Sobolev, J. M. Thompson, L. Danyushevsky, K. Goemann, M. Portnyagin, D. Garbe-Schoenberg, E. Hauri, J.-I. Kimura, Q. Chang, R. Senda, C. Chauvel, S. Campillo, and D. Ionov, “Preliminary data on new Olivine reference material MongOl Sh11-2 for in-situ microanalysis,” Goldschmidt Conf., 2017, Abs. 259.

  4. 4

    I. Baziotis, L. Ferrière, P. D. Asimow, D. Topa, and F. Brandstätter, “P-rich olivines in the impact melt lithology of the Chelyabinsk meteorite,” Lunar Planet. Sci. Conf. 47, #1437 (2016).

  5. 5

    A. E. Bence and T. L. Grove, “The Luna 24 highland component,” Mare Crisium: The View from Luna 24, Ed. by R. B. Lerrill and J. J. Papike, Geochim. Cosmochim Acta 9, 429–444 (1978).

  6. 6

    J. S. Boesenberg and R. H. Hewins An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochim. Cosmochim. Acta 74, 1923–1941 (2010).

    Article  Google Scholar 

  7. 7

    K. L. Cameron, J. J. Papike, A. E. Bence, and S. Sueno, “Petrology of fine-grained rock fragments and petrologic implications of single crystals from the Luna 20 soil,” Geochim. Cosmochim. Acta 37, 775–793 (1973).

    Article  Google Scholar 

  8. 8

    S. I. Demidova, M. A. Nazarov, C. A. Lorenz, G. Kurat, F. Brandstätter, and Th. Ntaflos, “Chemical composition of lunar meteorites and the lunar crust,” Petrology 15 (4), 386–407 (2007).

    Article  Google Scholar 

  9. 9

    S. I. Demidova, M. A. Nazarov, M. O. Anosova, Yu. A. Kostitsyn, Th. Ntaflos, and F. Brandstaetter “U–Pb zircon dating of the lunar meteorite Dhofar 1442,” Petrology 22 (1), 1–16 (2014).

    Article  Google Scholar 

  10. 10

    S. I. Demidova, M. A. Nazarov, T. Ntaflos, and F. Brandstätter, “Possible serpentine relicts in lunar meteorites,” Petrology 23 (2), 116–126 (2015).

    Article  Google Scholar 

  11. 11

    S. I. Demidova, M. A. Nazarov, K. M. Ryazantsev, M. O. Anosova, T. Ntaflos and F. Brandstätter, Enigmatic cathodoluminescent objects in the Dhofar 025 lunar meteorite: origin and sources, Petrology 25 (2), 139–149 (2017).

    Article  Google Scholar 

  12. 12

    S. I. Demidova, T. Ntaflos and F. Brandstätter, “P-bearing olivines from the “Luna-20” soil samples, their sources and possible phosphorus substitution mechanisms in lunar olivine,” Petrology 26 (3), 314–327 (2018a).

    Article  Google Scholar 

  13. 13

    S. I. Demidova, K. A. Badekha, and N. N. Kononkova, “Modeling conditions of crystallization of P-bearing fayalites of lunar mare basalts,” Proceedings VESEMPG-2018, GEOKHI, Moscow, Russia, 2018 (GEOKHI, Moscow, 2018b), pp. 302–306.

  14. 14

    D. Dhingra, T. D. Glotch, T. C. Prissel, S. W. Parman, C. M. Pieters, and B. T. Greenhagen, “Mg-spinel exposures within silica rich setting on Hansteen Alpha: probing the geologic context,” Lunar Planet. Sci. Conf. 48, 2104 (2017).

  15. 15

    A. R. Duncan, S. M. McKay, J. W. Stoeser, M. M. Lindstrom, D. J. Lindstrom, J. S. Fruchter, and G. G. Goles, “Lunar polymict brecia 14321: a compositional study of its principal components,” Geochim. Cosmochim. Acta 39, 247–260 (1975).

    Article  Google Scholar 

  16. 16

    S. M. Elardo, D. S. Draper, and C. K. Shearer, Jr., “Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite,” Geochim. Cosmochim. Acta 75, 3024–3045 (2011).

    Article  Google Scholar 

  17. 17

    S. M. Elardo, F. M. McCubbin, and C. K. Shearer, Jr., “Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion,” Geochim. Cosmochim. Acta 87, 154–177 (2012).

    Article  Google Scholar 

  18. 18

    A. Fabbrizio, J. R. Beckett, M. B. Baker, and E. M. Stolper, “Phosphorus zoning in olivine of Kilauea Iki lava lake, Hawaii,” Geophys. Res. Abstr. 12, EGU2010-1418-1 (2010).

    Google Scholar 

  19. 19

    K. P. Florensky, V. P. Polosukhin, A. T. Bazilevsky, and A. A. Konopikhin, Geology and Geomorphology of the Luna 20 landing site, Regolith from the Moon, Ed. by V. L. Barsukov and Yu. A. Surkov (Nauka, Moscow, 1979), pp. 41–51 [in Russian].

    Google Scholar 

  20. 20

    K. P. Florensky, A. A. Pronin, and A. T. Bazilevsky, “Geology of Luna-24 landing site,” Regolith from the Mare Crisium, Ed. by V. L. Barsukov (Nauka, Moscow, 1980), pp. 7–18 [in Russian].

    Google Scholar 

  21. 21

    A. J. Gawronska, K. Cronberger, and C. R. Neal, “Implications of bimodal olivine compositions in VHK basalts,” Lunar Planet. Sci. Conf. 49, 1821 (2018).

  22. 22

    T. D. Glotch, P. G. Lucey, J. L. Bandfield, B. T. Greenhagen, I. R. Thomas, R. C. Elphic, N. Bowles, M. B. Wyatt, C. C. Allen, Hanna K.L.Donaldson, and D. A. Paige, “Highly silicic compositions on the Moon,” Science 329, 1510–1513 (2010).

    Article  Google Scholar 

  23. 23

    T. D. Glotch, J. J. Hagerty, P. G. Lucey, B. R. Hawke, T. A. Giguere, J. A. Arnold, J.-P. Williams, B. L. Jolliff, and D. A. Paige, “The Mairan domes: silicic volcanic constructs on the Moon,” Geophys. Res. Lett. 38, L21204 (2011).

    Article  Google Scholar 

  24. 24

    C. A. Goodrich, “Phosphoran pyroxene and olivine in silicate inclusions in natural iron–carbon alloy, Disko Island, Greenland,” Geochim. Cosmochim. Acta 48, 1115–1126 (1984).

    Article  Google Scholar 

  25. 25

    T. B. Grant and S. C. Kohn, “Phosphorus partitioning between olivine and melt: an experimental study in the system Mg2SiO4–Ca2Al2Si2O9–NaAlSi3O8–Mg3(PO4)2,” Am. Mineral. 98, 1860–1869 (2013).

    Article  Google Scholar 

  26. 26

    B. T. Greenhagen, P. G. Lucey, M. B. Wyatt, T. D. Glotch, C. C. Allen, J. A. Arnold, J. L. Bandfield, N. E. Bowles, K. L. Donaldson Hanna, P. O. Hayne, E. Song, I. R. Thomas, and D. A. Paige, “Global silicate mineralogy of the moon from the Diviner lunar radiometer,” Science 329, 1507–1509 (2010).

    Article  Google Scholar 

  27. 27

    R. A. Grieve, G. A. McKay, H. D. Smith, and D. F. Weill, “Lunar polymict breccia 14321: a petrographic study,” Geochim Cosmochim Acta 39, 229–245 (1975).

    Article  Google Scholar 

  28. 28

    J. J. Hagerty, D. J. Lawrence, B. R. Hawke, D. T. Vaniman, R. C. Elphic, and W. C. Feldman, “Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon,” J. Geophys. Res. 111, E06002 (2006).

    Article  Google Scholar 

  29. 29

    T. M. Harrison and E. B. Watson, “The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations,” Geochim. Cosmochim. Acta 48, 1467–1477 (1984).

    Article  Google Scholar 

  30. 30

    O. B. James, and M. K. Flohr, “Subdivision of the Mg-suite noritic rocks into Mg-gabbronorites and Mg-norites,” J. Geophys. Res. 88 (Suppl.), A603–A614 (1983).

    Article  Google Scholar 

  31. 31

    K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, O. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, D. A. Frick, D. Gunther, and J. Enzweiler, “Determination of reference values for NIST SRM 610-617 glasses folliwing ISO guidelines,” Geostand. Geoanal. Res. 35, 397–429 (2011).

    Article  Google Scholar 

  32. 32

    B. L. Jolliff, C. Floss, I. S. McCallum, and J. M. Schwartz, “Geochemistry, petrology, and cooling history of 14161,7373: a plutonic lunar sample with textural evidence of granitic-fraction separation by silicate liquid immiscibility,” Am. Mineral. 84, 821–837 (1999).

    Article  Google Scholar 

  33. 33

    B. L. Jolliff, S. A. Wiseman, S. J. Lawrence, T. N. Tran, M. Robinson, H. Sato, B. R. Hawke, F. Scholten, J. Oberst, H. Hiesinger, C. H. Van Der Bogert, B. T. Greenhagen, T. D. Glotch, D. A. Paige, “Compton Belkovich: non mare silicic volcanism on the Moon’s farside,” Nature Geosci. 4, 566–571 (2011).

    Article  Google Scholar 

  34. 34

    K. H. Joy, M. E. Zolensky, and K. Nagashima, “Direct detection of projectile relics from the end of the lunar basin–forming epoch,” Science 336, 426–1429 (2012).

    Article  Google Scholar 

  35. 35

    N. R. Khisina and C. A. Lorenz, “Dehydrogenation as the mechanism of formation of the oriented spinel–pyroxene symplectites and magnetite–hematite inclusions in terrestrial and extraterrestrial olivines,” Petrology 23 (2), 176–188 (2015).

    Article  Google Scholar 

  36. 36

    B. A. Konecke, A. Fiege, A. C. Simon, and F. Holtz, “Cryptic metasomatism during late-stage lunar magmatism implicated by sulfur in apatite,” Geology 45 (G39249), 1 (2017).

    Google Scholar 

  37. 37

    O. L. Kuskov, A. I. Shapkin, and Yu. I. Sidorov, “On the possible existence of hydrosilicates in the lunar mantle,” Geochem. Int. 34 (11), 1539–1550 (1995).

    Google Scholar 

  38. 38

    O. L. Kuskov, V. A. Kronrod, and E. V. Kronrod, “Thermochemical constraints on the thermal state, composition, and mineralogy of the upper mantle of the Moon: evidence from the seismic models,” Solar Syst. Res. 49 (2), 75–91 (2015).

    Article  Google Scholar 

  39. 39

    E. M. Leont’eva, D. I. Matukov, M. A. Nazarov, S. A. Sergeev, Yu. A. Shukolyukov, and F. Brandstaetter, “First determination of the isotopic age of a lunar meteorite by the uranium–lead zircon method,” Petrology 13 (2), 193–196 (2005).

    Google Scholar 

  40. 40

    M. M. Lindstrom, A. R. Duncan, J. S. Fruchter, S. M. McKay, J. W. Stoeser, G. G. Goles, and D. J. Lindstrom, “Compositional characteristics of some Apollo 14 clastic materials,” Proc. Lunar Planet. Sci. Conf. 3, 1201–1214 (1972).

    Google Scholar 

  41. 41

    M. M. Lindstrom, S. A. Knapp, J. W. Shervais, and L. A. Taylor, “Magnesian anorthosites and associated troctolites and dunite in Apollo 14 breccias,” Proc. Lunar Planet. Sci. Conf. 15, J. Geophys. Res., C41–C49 (1984).

  42. 42

    J. Longhi, “Preliminary modeling of high-pressure partial melting: implications for early lunar differentiation,” Proc. Lunar Planet. Sci. Conf. 12, 1001–1018 (1981).

    Google Scholar 

  43. 43

    M. C. McCanta, J. R. Beckett, and E. M. Stolper, “Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and LL chondrite Semarkona,” Meteorit. Planet. Sci. 51, 520–546 (2016).

    Article  Google Scholar 

  44. 44

    F. M. McCubbin, A. Steele, E. H. Hauri, H. Nekvasil, S. Yamashita, and R. J. Hemley, ”Nominally hydrous magmatism on the Moon,” Proc. Nation. Acad. Sci. USA 107, 11223-8 (2010).

    Article  Google Scholar 

  45. 45

    C. Meyer, “The Lunar sample compendium,” ARES, 14321 (2009) compendium/14321.pdf

  46. 46

    M. S. Milman-Barris, J. R. Beckett, M. B. Baker, A. E. Hofmann, Z. M. Morgan, M. R. Crowley, D. Vielzeuf, and E. Stolper, “Zoning of phosphorus in igneous olivine,” Contrib. Mineral. Petrol. 155, 739–765 (2008).

    Article  Google Scholar 

  47. 47

    R. W. Morris, G. J. Taylor, H. E. Newsom, and K. Keil, “Highly evolved and ultramafic lithologies from Apollo 14 soils,” Proc. Lunar Planet. Sci. Conf. 20, 61–75 (1990).

    Google Scholar 

  48. 48

    M. A. Nazarov, S. I. Demidova, and L. A. Taylor, “Trace element chemistry of lunar highland meteorites from Oman,” Lunar Planet. Sci. 34, 1636 (2003).

    Google Scholar 

  49. 49

    M. A. Nazarov, L. Ya. Aranovich, S. I. Demidova, T. Ntaflos, and F. Brandstätter, “Aluminous Enstatites of Lunar Meteorites and Deep-Seated Lunar Rocks,” Petrology 19 (1), 13–25 (2011).

    Article  Google Scholar 

  50. 50

    M. A. Nazarov, S. I. Demidova, M. O. Anosova, Yu. A. Kostitsyn, Th. Ntaflos, and F. Brandstaetter, “Native silicon and iron silicides in the Dhofar 280 lunar meteorite,” Petrology 20 (6), 506–519 (2012).

    Article  Google Scholar 

  51. 51

    C. R. Neal and L. A. Taylor, “Metasomatic products of the lunar magma ocean: the role of KREEP dissemination,” Geochim. Cosmochim. Acta 53, 529–541 (1989).

    Article  Google Scholar 

  52. 52

    C. R. Neal and L. A. Taylor, “Evidence for metasomatism of the lunar highlands and the origin of whitlockite,” Geochim. Cosmochim. Acta 55, 2965–2980 (1991).

    Article  Google Scholar 

  53. 53

    C. R. Neal and G. Y. Kramer, “The petrogenesis of the Apollo 14 high-Al mare basalts,” Am. Mineral. 91, 1521–1535 (2006).

    Article  Google Scholar 

  54. 54

    J. Papike, L. Taylor, and S. Simon, “Lunar minerals,” Lunar Sourcebook: A Users Guide to the Moon, Ed. by G. H. Heiken (Cambridge University Press, 1991), pp. 121–182.

    Google Scholar 

  55. 55

    J. J. Papike, G. W. Fowler, and C. K. Shearer, “Orthopyroxene as a recorder of lunar Mg-suite norite petrogenesis: an ion microprobe investigation of Mg suite norites,” Am. Mineral. 79, 796–800 (1994).

    Google Scholar 

  56. 56

    J. J. Papike, G. W. Fowler, C. K. Shearer, G. D. Layne, “Ion Microprobe investigation of plagioclase and orthopyroxene from lunar Mg-suite norites: Implications for calculating parental melt REE concentrations and for assessing postcrystallization REE redistribution,” Geochim. Cosmochim. Acta 60, 3967–3978 (1996).

    Article  Google Scholar 

  57. 57

    H. A. Papp I. M. Steele, and J. V. Smith, “Luna 24: 90–150 micrometer fraction: Implication for remote sampling of regolith,” Mare Crisium: The View from Luna 24, Ed. by R. B. Merril and J. J. Papike (Pergamon Press, New York, 1978), pp. 245–264.

    Google Scholar 

  58. 58

    A. S. Pavlenko, L. S. Tarasov, I. D. Shevaleevskii, and A. V. Ivanov, “Petrology of lunar rocks from the Mare Fecunditatis,” Regolith from the Mare Fecunditatis, Ed. by A. P. Vinogradov (Nauka, Moscow, 1974), pp. 56–64 [in Russian].

    Google Scholar 

  59. 59

    N. J. Potts, J. J. Barnes, R. Tartese, I. A. Franchi, M. Anand, ”Chlorine isotopic compositions of apatite in Apollo 14 rocks: evidence for widespread vapor-phase metasomatism on the lunar nearside ~4 billion years ago,” Geochim. Cosmochim. Acta 230, 46–59 (2018).

    Article  Google Scholar 

  60. 60

    J. M. Rhodes and N.J. Hubbard, “Chemistry, classification, and petrogenesis of Apollo 15 mare basalts,” Proc. Lunar Planet. Sci. Conf. 4, 1127–1148 (1973).

    Google Scholar 

  61. 61

    Ed. Roedder and P. W. Weiblan, “Lunar petrology of silicate melt inclusions Apollo 11 rocks,” Proc. Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta (Suppl. 1), 801 (1970).

  62. 62

    M. J. Rutherford, P. C. Hess, and G. H. Daniel, “Experimental liquid line of descent and liquid immiscibility for basalt 70017,” Proc. Lunar Planet. Sci. Conf. 5, 569–583 (1974).

    Google Scholar 

  63. 63

    V. D. Shcherbakov, and P. Yu. Plechov, “Phosphorus-bearing olivine from 2012–2013 lava flow from Tolbachik volcano,” New Data on Minerals 52 (1), 15–17 (2018).

    Google Scholar 

  64. 64

    C. K. Shearer, P. M. Aaron, P. V. Burger, Y. Guan, A. S. Bell, and J. J. Papike, “Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in Martian basalts. evidence from the distribution of phosphorus in olivine megacrysts,” Geochim. Cosmochim. Acta 120, 17–38 (2013).

    Article  Google Scholar 

  65. 65

    C. K. Shearer, M. E. Elardo, N. E. Petro, L. E. Borg, and F. M. McCubin, “Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective,” Am. Mineral. 100, 294–325 (2015).

    Article  Google Scholar 

  66. 66

    J. W. Shervais and S. K. Vetter, “Auto-metasomatism of the western lunar highlands: Result of closed system fractionation and mobilization of a KREEPy trapped liquid,” Lunar Planet. Sci. 22, 1237–1238 (1991).

    Google Scholar 

  67. 67

    J. W. Shervais and J. J. McGee, “Ion and electron microprobe study of troctolites, norites, and anorthosites from Apollo 14: Evidence for KREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks,” Geochim. Cosmochim. Acta 62, 3009–3023 (1998).

    Article  Google Scholar 

  68. 68

    J. W. Shervais, L. A. Taylor, J. C. Laul, and M.R. Smith, “Pristine highland clasts in consortium breccia 14305: petrology and geochemistry,” Proc. Lunar Planet. Sci. Conf. 15, J. Geophys. Res. 89, C25–C40 (1984).

    Article  Google Scholar 

  69. 69

    C. V. Stead, E. L. Tomlison, C. A. McKenna, and B. Z. Kamber, “Rare earth element partitioning and subsolidus exchange behaviour in olivine,” Chem. Geol. 475, 1–13 (2017).

    Article  Google Scholar 

  70. 70

    D. Stöffler and H. D. Knöll, “Composition and origin of plagioclase, pyroxene, and olivine clasts of lunar breccias 14006, 14063, 14066, 14311, 14320, and 14321,” Proc. Lunar Planet. Sci. Conf. 8, 1849–1867 (1977).

    Google Scholar 

  71. 71

    C. Sun and Y. Liang, “An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites,” Chem. Geol. 372, 80–91 (2014).

    Article  Google Scholar 

  72. 72

    L. S. Tarasov, I. D. Shevaleevskii, and M. A. Nazarov, “Petrographic and mineralogical studies of magmatic rocks from the the Mare Fecunditatis, Regolith from the Mare Fecunditatis, Ed. by A. P. Vinogradov (Nauka, Moscow, 1974), pp. 129–147 [in Russian].

    Google Scholar 

  73. 73

    M. J. Toplis, G. Libourel, and M. R. Carroll, “The role of phosphorus in crystallization processes of basalt: an experimental study,” Geochim. Cosmochim. Acta 58, 797–810 (1994).

    Article  Google Scholar 

  74. 74

    A. H. Treiman, J. W. Boyce, J. Gross, Y. Guan, J. M. Eiler, and E. M. Stolper, “Phosphate-halogen metasomatism of lunar granulite 79215: impact-induced fractionation of volatiles and incompatible elements,” Am. Mineral. 99, 1860–1870 (2014).

    Article  Google Scholar 

  75. 75

    P. A. Tropper, Recheis, and J. Konzett “Experimental investigations on the pyrometamorphic formation of phosphorous-bearing olivines in partially molten metapelitic gneisses,” Eur. J. Mineral. 16, 631-640 (2004).

    Article  Google Scholar 

  76. 76

    Y. Wang, X. Hua, and W. Hsu “Phosphoran-olivine in opaque assemblages of the Ningqiang carbonaceous chondrite: implication to their precursors,” Lunar Planet. Sci. Conf. 37, 1504 (2006).

  77. 77

    P. H. Warren, “Seventh foray: Whitlockite-rich lithologies, a diopside-bearing troctolitic anorthosite, ferroan anorthosites, and KREEP,” J. Geophys. Res. 88 (Supp. 1), B151–B164 (1983).

    Article  Google Scholar 

  78. 78

    P. H. Warren, and J. T. Wasson, “Pristine nonmare rocks and the nature of the lunar crust,” Proc. Lunar Planet. Sci. Conf. 8, 2215–2235 (1977).

    Google Scholar 

  79. 79

    P. H. Warren, G. J. Taylor, K. Keil, C. Marshall, and J. T. Wasson, “Foraging westward for pristine nonmare rocks: Complications for petrogenetic models,” Proc. Lunar Planet. Sci. Conf. 12, 21–40 (1981).

    Google Scholar 

  80. 80

    E. B. Watson, “Apatite saturation in basic to intermediate magmas,” Geophys. Res. Lett. 6, 937-940 (1979).

    Article  Google Scholar 

  81. 81

    B. Welsch, J. Hammer, and E. Hellebrand, “Phosphorus zoning reveals dendritic architecture of olivine,” Geology 42, 867–870 (2014).

    Article  Google Scholar 

  82. 82

    G. Witt-Eickschen and H. St. C. O’Neill, “The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite,” Chem. Geol. 221, 65–101 (2005).

    Article  Google Scholar 

Download references


This work was partly supported by the Russian Foundation for Basic Research (Project no. 16-05-00695).

Author information



Corresponding authors

Correspondence to S. I. Demidova or M. O. Anosova or N. N. Kononkova or F. Brandstätter or T. Ntaflos.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demidova, S.I., Anosova, M.O., Kononkova, N.N. et al. Phosphorus-bearing Olivines of Lunar Rocks: Sources and Localization in the Lunar Crust. Geochem. Int. 57, 873–892 (2019).

Download citation


  • P-bearing olivine
  • lunar rocks
  • lunar samples
  • lunar meteorites