Skip to main content
Log in

Bioavailability and Ecotoxicity of Metals in Aquatic Systems: Critical Contamination Levels

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Bioavailability and ecotoxicity of metals and their relation to geochemical conditions in aquatic environments were considered. It was shown that free ions are the most penetrative species of most metals, except for organometallic complexes of some metals, for example, mercury. We analyzed models for the assessment of the hazard of metal contamination of water environments using the results of thermodynamic calculations of free ion concentrations, the ability of biological receptors to bind them, and the toxic properties of the metals. A concept was developed on the main mechanisms of metal penetration and excretion and cytotoxicity of nonessential elements. A new method was proposed for the estimation of critical levels of polymetallic contamination of water on the basis of measurements of water complexation capacity and determination of the dose–effect relations between the integrated characteristics of the polymetallic contamination and indicators of the health of the ecosystems (in situ) from the results of investigations in the northern Kola Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. F. Alekseenko, A. V. Suvorinov, and E. V. Vlasova, Metals in the Environment: Black Sea Coastal Aquatic Landscapes of Russia (NIIPMT, Moscow, 2012) [in Russian].

  2. F. T. Bingham, E. Costa, and E. Eichenberger, Concepts on Metal Ion Toxicity, Ed. By H. Sigel and A. Sigel, (Marcel Dekker, New York, 1986)

  3. P. Bjerregaard and O. Andersen, “Ecotoxicology of metals - sources, transport, and effects in the ecosystem,” Handbook on the Toxicology of Metals, Ed. by G. F. Nordberg, B. A. Fowler, and M. Nordberg, (Academic Press, 2014), pp. 79–100.

    Google Scholar 

  4. P. L. Brezonik, S. O. King, and C. E. Mach, “The influence of water chemistry on trace metal bioavailability and toxicity to aquatic organisms,” Metal Ecotoxicology: Concepts and Application, Ed. by M. C. Newman and A. W. McIntash (Lewis Publishers, New York, 1991), pp. 2–31.

    Google Scholar 

  5. P. G. C. Campbell, “Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model,” Metal Speciation and Bioavailability in Aquatic Systems, Ed. by A. Tessier and D. R. Turner (Wiley, Chichester, 1995), pp. 45–102.

    Google Scholar 

  6. CCME (Canadian Council of Ministers of the Environment) A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life (Winnipeg, 2007).

  7. R. Cornelis and M. Nordberg, General chemistry, sampling, analytical methods, and speciation. (metallothioneins),” Handbook on the Toxicology of Metals, Ed. by G.F. Nordberg, B.A. Fowler, and M. Nordberg (Academic Press, 2014), pp. 18–37.

    Google Scholar 

  8. M. V. Dabakhov, E. V. Dabakhova, and V. I. Titova, Heavy Metals: Ecotoxicology and Problems of Standardization (VVAGS, Nizhnii Novgorod, 2005) [in Russian].

    Google Scholar 

  9. T. Davidson Q. Ke, and M. Costa, “Selected molecular mechanisms of metal toxicity and carcinogenicity,” Handbook on the Toxicology of Metals, Ed. by G.F. Nordberg, B.A. Fowler, and M. Nordberg (Academic Press, 2014), pp. 79–100

    Google Scholar 

  10. M. H. Depledge and P. S. Rainbow, “Models of regulation and accumulation of trace metals in marine invertebrates,” Comp. Biochem. Physiol. 97, 1–7 (1990).

    Article  Google Scholar 

  11. M. I. Dinu, Influence of Functional Features of Humic Matters on Metal Speciation in Natural Waters (TyumGU, Tyumen, 2012) [in Russian].

  12. M. Dinu, “Interaction between metal ions in waters with humic acids in gley-podzolic soils,” Geochem. Int. 53 (3), 265–276 (2015).

    Article  Google Scholar 

  13. M. Dinu, “Formation of organic substances of humus nature and their biospheric properties,” Geochem. Int. 55 (10), 911–926 (2017).

    Article  Google Scholar 

  14. Y. Dudal and F. Gérard, “Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications,” Earth-Sci. Rev. 66 (3–4), 199–216 (2004).

    Article  Google Scholar 

  15. L. J. Ehlers and R. G. Luthy, “Contaminant bioavailability in soil and sediment. Improving risk assessment and remediation rests on better understanding bioavailability,” Environ. Sci. Technol. 37 (15), 295–302 (2003).

    Article  Google Scholar 

  16. V. V. Ermakov, S. F. Tyutikov, and V. A. Safonov, Biogeochemical Indication of Microelementosis (Ross. Akad. Nauk., Moscow, 2018) [in Russian].

    Google Scholar 

  17. European Commission Common Implementation Strategy for the Water Framework Directive. Technical Guidance for Deriving Environmental Quality Standards (Brussel, 2011).

  18. U. Forstner and G. T. W. Wittman, Metal Pollution in Aquatic Environment (Springer, Berlin, 1981).

  19. C. Fortin, Y. Couillard, B. Vigneault, and P. G. C. Campbell, “Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange,” Aquat. Geochem. 16 (1), 151–172 (2010).

    Article  Google Scholar 

  20. G. T. Frumin, Ecological Toxicology (RGGMU, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  21. N. Gandhi, M. L. Diamond, M. A. J. Huijbregts, J. B. Guinée, W. J. G. M. Peijnenburg, and D. Van De Meent, “Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies,” Int. J. Life Cycle Assess. 16 (8), 774–787 (2011).

    Article  Google Scholar 

  22. E. Gautheier, I. Fortier, and F. Courchesne, “Aluminum form in drinking water and Risk of Alzheimer’s Disease,” Environ. Res. 84, 234–246 (2002).

    Article  Google Scholar 

  23. S. G. George and P. E. Olsson, “Metallothionein as indicator of trace metal pollution,” Biomonitoring of Coastal Waters and Estuaries, Ed. by K. J. M. Kramer (CRC press, Boca Raton, 1994), pp. 151–178.

    Google Scholar 

  24. S. N. Golikov, I. V. Sanotsky, and L. A. Tiunov, General Mechanisms of Toxic Action (Meditsina, Leningrad, 1986) [in Russian].

    Google Scholar 

  25. Handbook on the Toxicology of Metals, Ed. by G.F. Nordberg, B.A. Fowler, and M. Nordberg (Academic Press, 2014).

    Google Scholar 

  26. A. G. Heath, Water Pollution and Fish Physiology (Lewis Publishers, London, 2002).

    Google Scholar 

  27. R. J. M. Hudson, “Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects,” Sci. Tot. Environ. 219, 95–115 (1998).

    Article  Google Scholar 

  28. L. A. Kapustka, W. H. Clements, L. Ziccardi, P. R. Paquin, M. Sprenger, and D. Wall, “Issue paper on the ecological effects of metals,” U.S. Environmental Protection Agency Risk Assessment Forum (Washington, 2004).

    Google Scholar 

  29. I. A. Lapin and V. N. Krasyukov, “Role of humic matters in complexing and migration of heavy metals in surface waters,” Vodn. Resur., No. 1, 134–145 (1986).

  30. U. Lindahl and P. Mokness, “Metallothionein as a bioindicator of heavy metal stress in Colombian fish and shrimp: a study of dose-dependent induction,” Fishering Develop. Ser. 73, 23–33 (1993).

    Google Scholar 

  31. A. R. Linde, S. Sanchez-Galan, and E. Garcia-Vasquez, “Metallothionein as bioindicator of freshwater metal pollution: European eel and Brown trout,” Ecotoxicol. Envir. Saf. 49, 60–63 (2001).

    Article  Google Scholar 

  32. List of Fishery Standards: Maximum Permissible Concentrations (MPC) and Approximate Safe Levels of Exposure (ASLE) of Toxic Substances for Fishery Water Basins (VNIRO, Moscow, 1999) [in Russian].

  33. R. F. C. Mantoura, A. Dixon, and J. P. Riley, “The speciation of trace metals with humic compounds in natural waters,” Thalassia Iugoslavica 14 (1–2), 125–145 (1978).

    Google Scholar 

  34. J. C. McGeer, C. Szebedinszky, D. G. McDonald, and C. M. Wood, “The role of dissolved organic carbon in moderating the bioavailability and toxicity of Cu to rainbow trout during chronic waterbourne exposure,” Comp. Biochem. Physiol. 133, 147–160 (2002).

    Google Scholar 

  35. G. Merrington, A. Peters, and C. E. Schlekat, “Accounting for metal bioavailability in assessing water quality: a step change?” Environ. Toxicol. Chem. 35 (2), 257–265 (2016).

    Article  Google Scholar 

  36. T. I. Moiseenko, “The fate of metals in arctic surface waters. Method for defining critical levels,” Science Tot. Environ. 236 (1–3), 19–39 (1999).

    Article  Google Scholar 

  37. T. I. Moiseenko, Water Ecotoxicology: Fundamental and Applied Aspects (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  38. T. I. Moiseenko, “Impact of geochemical factors of aquatic environment on the metal bioaccumulation in fish,” Geochem. Int., 53 (3), 213–223 (2015).

    Article  Google Scholar 

  39. T. I. Moiseenko “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).

    Article  Google Scholar 

  40. T. I. Moiseenko and L. P. Kudryavtseva, “Ecotoxicological assessment of anthropogenic hydrogeochemical anomalies: an example being the Kola mining and metallurgical complex,” Geochem. Int. 37 (10), 1000–1017 (1999).

    Google Scholar 

  41. T. I. Moiseenko, B. A. Morgunov, N. A. Gashkina, V. V. Megorskiy, and A. A. Pesiakova, “Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: case study of the Murmansk region, northwest of the Kola Peninsula, Russia,” Environ. Research Lett., No. 13, 065005 (2018).

  42. T. Nagai and K. De Schamphelaere, “The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions,” Environ. Toxicol. Chem. 35 (11), 2765–2773 (2016).

    Article  Google Scholar 

  43. C. V. Nolan, S. W. Fowler and J. L. Teyssie, “Cobalt speciation and bioavailability in marine organisms,” Mar. Ecol. Progr. Ser. 88, 105–116 (1991).

    Article  Google Scholar 

  44. C. Nys, J. Asselman, J. Hochmuth, C. Janssen, R. Blust, E. Smolders, and K. De Schamphelaere, “Mixture toxicity of nickel and zinc to Daphnia magna is non interactive at low effect sizes but becomes synergistic at high effect sizes,” Environ. Toxicol. Chem. 34 (5), 1091–1102 (2015).

    Article  Google Scholar 

  45. E. Perez and T. Hoang, “Chronic toxicity of binary-metal mixtures of cadmium and zinc to Daphnia magna,” Environ. Toxicol. Chem. 99, 1–11 (2017).

    Google Scholar 

  46. D. J. H. Phillips and P. S. Rainbow, “Strategies of trace metal sequestration in aquatic organisms,” Mar. Envir. Res. 49, 83–93 (1989).

    Google Scholar 

  47. D. J. H. Phillips, “Chemistries and environmental fates of trace metals and organochlorines in aquatic ecosystems,” Marine Pollut. Bull. 31, 193–200 (1995).

    Article  Google Scholar 

  48. P. S. Rainbow, “Physiology, physicochemistry and metal uptake – a crustacean perspective,” Mar. Pollut. Bull. 31, 55–59 (1995).

    Article  Google Scholar 

  49. I. V. Rodyushkin, Candidate’s Dissertation in Geography (Inst. Ozerovedeniya, St. Petersburg, 1995) [in Russian].

  50. I. Rodushkin, T. Moiseenko, and L. Kudravsjeva, “Aluminum in the surface waters of the Kola peninsula, Russia,” Science Tot Environ. 163 (1–3), 55–59 (1995).

    Article  Google Scholar 

  51. K. Simkiss, “Ecotoxicant at the cell-membrane barrier,” Ecotoxicology: a Hierarchical Trieatment. Ed. by M.C. Newman and Ch.H. Jagoe (Levis publishers, New York, 1996), pp. 59–84.

  52. K. Simkiss and M. G. Taylor, “Metal fluxes across the membranes of aquatic organisms,” Rev. Aquat. Sci. 1, 173–188 (1989).

    Google Scholar 

  53. K. S. Smith L. S. Balistrierib, and A. S. Todd, “Using biotic ligand models to predict metal toxicity in mineralized systems,” Appl. Geochem. 57, 55–72 (2015).

    Article  Google Scholar 

  54. R. K. Tekade R. Maheshwari, and N. K. Jain “Toxicity of nanostructured biomaterials,” Nanostruct. Mater. Biomed. Appl., 231–256 (2018).

  55. U.S. EPA National Recommended Water Quality Criteria. Report 4304T. Office of Water, Office of Science and Technology. (EPA/600/4-91/002) (Springfield, 2004).

  56. K. Väänänena, M. T. Leppänen, X. Chen, and J. Akkanenaa, “Metal bioavailability in ecological risk assessment of freshwater ecosystems: from science to environmental management,” Ecotox. Environ. Saf. 147, 430–446 (2018).

    Article  Google Scholar 

  57. R. A. van Dam, A. C. Hogan, C. D. McCullough, M. A. Houston, C. L. Humphrey, and A. J. Harford, “Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water,” Environ. Toxicol. Chem. 29 (2), 410–421 (2010).

    Article  Google Scholar 

  58. G. M. Varshal, I. Ya. Koshcheeva, I. S. Sirotkina, T. K. Belyukhanova, L. N. Intskirveli, and N. S. Zalyukina, “Study of organic substances in surface waters and their interaction with metal ions,” Geokhimitya, No. 4, 598–608 (1979).

    Google Scholar 

  59. M. G. Vijver, C. A. M. Van Gestel, R. P. Lanno, N. M. Van Straalen, and W. J. G. M. Peijnenburg, “Internal metal sequestration and its ecolotoxicological relevance: a review,” Environ. Sci. Technol. 38, 4705–4712 (2004).

    Article  Google Scholar 

  60. A. K. Whitfield and M. Elliott, “Fish as indicator of environmental and ecological changes within estuaries: a review of progress and suggestions for the future,” J. Fish Biol. 61 (4), 229–250 (2002).

    Article  Google Scholar 

  61. P. T. S. Wong and D. G. Dixon, “Bioassessment of water quality,” Environ Tox. Water Quality: An Intern. J. 10, 320–345 (1995).

  62. C. M. Wood, “An introduction to metals in fish physiology and toxicology: basic principles,” Homeostasis and Toxicology of Essential Metals-Fish Physiology, Ed. by C.M. Wood, A.P. Farrell, and C.J. Brauner (Elsevier, San Diego, 2011), pp. 1–51.

    Google Scholar 

  63. F. Wu, W. Meng, X. Zhao, H. Li, R. Zhang, Y. Cao, and H. Liao, “China embarking on development of its own national water quality criteria system,” Environ. Sci. Technol. 44 (21), 7992–7993 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Moiseenko.

Additional information

Translated by A. Girnis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, T.I. Bioavailability and Ecotoxicity of Metals in Aquatic Systems: Critical Contamination Levels. Geochem. Int. 57, 737–750 (2019). https://doi.org/10.1134/S0016702919070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919070085

Keywords:

Navigation