Skip to main content
Log in

Effect of Mass-Independent Isotope Fractionation of Sulfur (Δ33S and Δ36S) during SO2 Photolysis in Experiments with a Broadband Light Source

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract–This paper presents the results of experimental studies of the behavior of mass-independent isotope effects of sulfur Δ33S and Δ36S during photochemical processes initiated by a broadband ultraviolet radiation. Experiments were performed in a flow photochemical reactor using a high-pressure mercury lamp, which is a source of radiation of a wide range with maximum radiation intensity in the wavelength range of 270−330 nm and weaker intensity in the range of 190−250 nm. The temperature and SO2 pressure dependences of the sulfur isotope ratios in the elemental sulfur products are revealed. Based on a comparative analysis of our isotope data with data from previous experimental studies with xenon and hydrogen lamps, it was shown that the correlation between the values of δ34S, Δ33S and Δ36S in elemental sulfur depends on the relative spectral distribution of the radiation intensity. Based on a comparison of our isotope data with data from previous experimental studies with xenon and hydrogen lamps, it was shown that the correlation between the values of δ34S, Δ33S and Δ36S in elemental sulfur depends on the relative spectral distribution of the radiation intensity. Our experiments suggest that photochemical processes in the range of 250−330 nm could play a significant role in the production of an isotope sulfur anomaly in the Archean atmosphere. The conditions in which 250− 330 nm radiation prevails over the 190−220 nm radiation are consistent with the assumption that the level of solar radiation reaching the Earth’s surface in Archean was several orders of magnitude higher in the wavelength range 200−300 nm compared with the current level of radiation in this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. Cnossen, J. Sanz-Forcada, F. Favata, O. Witasse, T. Zegers, and N. F. Arnold, “Habitat of early life: Solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago,” J. Geophys. Res. 112 (E2), E02008 (2007).

    Article  Google Scholar 

  2. Y. Endo, Y. Ueno, S. Aoyama, and S. O. Danielache, “Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere,” Earth Planet. Sci. Lett. 453, 9–22 (2016).

    Article  Google Scholar 

  3. J. Farquhar, H. Bao, and M. H. Thiemens, “Atmospheric influence of Earth’s earliest sulfur cycle,” Science 289 (5480), 756–759 (2000).

    Article  Google Scholar 

  4. J. Farquhar, M. Peters, D. T. Johnston, H. Strauss, A. Masterson, U. Wiechert, and A. J. Kaufman, “Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry,” Nature 449 (7163), 706–709 (2007).

    Article  Google Scholar 

  5. J. Farquhar, J. Savarino, S. Airieau, and M. H. Thiemens, “Observation of wavelength–sensitive mass–independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere,” J. Geophys. Res. 106 (E12), 32829–32839 (2001).

    Article  Google Scholar 

  6. A. Galić, P. R. D. Mason, J. M. Mogollón, M. Wolthers, P. Z. Vroon, and M. J. Whitehouse, “Pyrite in a sulfate–poor Paleoarchean basin was derived predominantly from elemental sulfur: Evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton,” Chem. Geol. 449, 135–146 (2017).

    Article  Google Scholar 

  7. E. M. Galimov, “Role of low solar luminosity in the history of the biosphere,” Geochem. Int. 55 (5), 401–417 (2017).

    Article  Google Scholar 

  8. I. Halevy, D. T. Johnston, and D. P. Schrag, “Explaining the structure of the Archean mass–independent sulfur isotope record,” Science 329 (5988), 204–207 (2010).

    Article  Google Scholar 

  9. E. H. Hauri, D. Papineau, J. Wang, and F. Hillion, “High–precision analysis of multiple sulfur isotopes using NanoSIMS,” Chem. Geol. 420, 148–161 (2016).

    Article  Google Scholar 

  10. A. V. Ignatiev, T. A. Velivetskaya, S. Y. Budnitskiy, V. V. Yakovenko, S. V. Vysotskiy, and V. I. Levitskii, “Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC–IRMS at high spatial resolution,” Chem. Geol. 493, 316–326 (2018).

    Article  Google Scholar 

  11. D. T. Johnston, “Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle,” Earth Sci Rev. 106 (1–2), 161–183 (2011).

    Article  Google Scholar 

  12. A. J. Kaufman, D. T. Johnston, J. Farquhar, A. L. Masterson, T. W. Lyons, S. Bates, A. D. Anbar, G. L. Arnold, J. Garvin, and R. Buick, “Late Archean biospheric oxygenation and atmospheric evolution,” Science 317 (5846), 1900–1903 (2007).

    Article  Google Scholar 

  13. H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen “The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest,” Earth Syst. Sci. Data 5, 365–373 (2013).

    Article  Google Scholar 

  14. A. L. Masterson, J. Farquhar, and B. A. Wing, “Sulfur mass-independent fractionation patterns in the broadband UV photolysis of sulfur dioxide: pressure and third body effects,” Earth Planet. Sci. Lett. 306 (3–4), 253–260 (2011).

    Article  Google Scholar 

  15. S. Ono, “Photochemistry of sulfur dioxide and the origin of mass–independent isotope fractionation in Earth’s atmosphere,” Annu. Rev. Earth Planet. Sci. 45 (1), 301–329 (2017).

    Article  Google Scholar 

  16. S. Ono, N. Beukes, and D. Rumble, “Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa,” Precambrian Res. 169 (1–4), 48–57 (2009).

    Article  Google Scholar 

  17. S. Ono, A. R. Whitehill, and J. R. Lyons, “Contribution of isotopologue self–shielding to sulfur mass–independent fractionation during sulfur dioxide photolysis,” J. Geophys. Res. Atmos. 118 (5), 2444–2454 (2013).

    Article  Google Scholar 

  18. A. Pavlov and J. Kasting, “Mas–independent fractionation of sulfur isotopes in Archaean sediments: Strong evidence for an anoxic Archaean atmosphere,” Astrobiology 2 (1), 27–41 (2002).

    Article  Google Scholar 

  19. P. Philippot, M. van Zuilen, and C. Rollion-Bard, “Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity,” Nat. Geosci. 5 (9), 668–674 (2012).

    Article  Google Scholar 

  20. D. L. Roerdink, P. R. D. Mason, M. J. Whitehouse, and T. Reimer, “High-resolution quadruple sulfur isotope analyses of 3.2 Ga pyrite from the Barberton Greenstone Belt in South Africa reveal distinct environmental controls on sulfide isotopic arrays,” Geochim. Cosmochim. Acta 117, 203–215 (2013).

    Article  Google Scholar 

  21. E. Thomassot, J. O’Neil, D. Francis, P. Cartigny, and B. A. Wing, “Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec),” Proc. Natl. Acad. Sci. USA. 112 (3), 707–712 (2015).

    Article  Google Scholar 

  22. Y. Ueno, S. Ono, D. Rumble, and S. Maruyama, “Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean,” Geochim. Cosmochim. Acta 72 (23), 5675–5691 (2008).

    Article  Google Scholar 

  23. V. I. Ustinov, V. A. Grinenko, and S. G. Ivanov, “Sulfur isotope effect during SO2 photolysis,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 5, 1192–1193 (1988).

  24. M. J. Whitehouse, B. S. Kamber, C. M. Fedo, and A. Lepland, “Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland,” Chem. Geol. 222 (1–2), 112–131 (2005).

    Article  Google Scholar 

  25. A. R. Whitehill, B. Jiang, H. Guo, and S. Ono, “SO2 photolysis as a source for sulfur mass–independent isotope signatures in stratospehric aerosols,” Atmos. Chem. Phys. 15, 1843–1864 (2015).

    Article  Google Scholar 

  26. A. R. Whitehill and S. Ono, “Excitation band dependence of sulfur isotope mass–independent fractionation during photochemistry of sulfur dioxide using broadband light sources,” Geochim. Cosmochim. Acta 94, 238–253 (2012).

    Article  Google Scholar 

  27. A. L. Zerkle, M. W. Claire, S. D. Domagal-Goldman, J. Farquhar, and S. W. Poulton, “A bistable organic–rich atmosphere on the Neoarchaean Earth,” Nat. Geosci. 5 (5), 359–363 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Ignatiev, T. A. Velivetskaya or V. V. Yakovenko.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatiev, A.V., Velivetskaya, T.A. & Yakovenko, V.V. Effect of Mass-Independent Isotope Fractionation of Sulfur (Δ33S and Δ36S) during SO2 Photolysis in Experiments with a Broadband Light Source. Geochem. Int. 57, 751–760 (2019). https://doi.org/10.1134/S0016702919070061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919070061

Keywords:

Navigation