Skip to main content
Log in

High-Temperature Beryl from Vugless Granite Pegmatites of the Suprunovskoye Deposit, Irkutsk Oblast, Russia

  • SHORT COMMUNICATIONS
  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

New data were obtained on the chemical composition of beryl from the Suprunovskoye deposit (wt %): 66.10 SiO2, 0.51 Na2O, 17.99 Al2O3, 0.37 MgO, 0.03 K2O, 0.02 CaO, 0.58 FeO, and 13.70 BeO (calculated). Fluid and melt inclusions were investigated for the first time in this mineral. It was found that the beryl was formed during late stages of granite magmatism from a specific pegmatite silicate melt or a water–silicate liquid enriched in water (>7 wt %), heavy REE (La/Yb = 0.48), and lithium, and depleted in fluorine and boron at a temperature of ~700°C and a pressure of ~6 kbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Geology of the USSR. Volume 17. Irkutsk Oblast. Geological Description (Gos. Nauchn-Tekhn. Izd-vo po Geol. Okhr. Nedr, Moscow, 1962) [in Russian]

  2. R. M. Hazen, R. C. Ewing, and D. A. Sverjensky, “Evolution of uranium and thorium minerals,” Am. Mineral. 94 (10), 1293–1311 (2009).

    Article  Google Scholar 

  3. P. D. Ihinger, Y. Zhang, and E. M. Stolper, “The speciation of dissolved water in rhyolitic melt— preliminary results,” Geochim. Cosmochim. Acta 63 (21), 3567–3578 (1999).

    Article  Google Scholar 

  4. E. Ya. Kievlenko, Gem Geology (Ekost, Moscow, 2001) [in Russian].

    Google Scholar 

  5. A. M. Mazukabzov, D. P. Gladkochub, T. V. Donskaya, A. M. Stanevich, A. N. Didenko, E. V. Bibikova, V. Yu. Vodovozov, A. A. Kazansky, T. I. Kirnozova, I. K. Kozakov, K. M. Konstantinov, B. B. Kochnev, D. V. Metelkin, T. Ota, V. K. Nemerov, A. A. Postnikov, et al., Precambrian Evolution of the Southern Siberian Craton (SO RAN, Nauka, 2006) [in Russian].

  6. V. B. Naumov, “Thermometric study of melt inclusions in quartz phenocrysts from quartz porphyry,” Geokhimiya, No. 4, 494–498 (1969).

    Google Scholar 

  7. C. H. Nielsen and H. Sigurdson, “Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses,” Am. Mineral. 66, 547–552 (1981).

    Google Scholar 

  8. A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, “Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals,” Geochem. Int. 40 (3), 219–235 (2002).

    Google Scholar 

  9. I. S. Peretyazhko, V. Y. Zagorsky, S. Z. Smirnov, and M. Y. Mikhailov, “Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia),” Chem. Geol. 210 (2), 91–111 (2004).

    Article  Google Scholar 

  10. M. V. Portnyagin, S. G. Simakin, and A. V. Sobolev, “Fluorine in primitive magmas of the Troodos Ophiolite Complex, Cyprus: analytical methods and main results,” Geochem. Int. 40 (7), 625–632 (2002).

    Google Scholar 

  11. S. Z. Smirnov, “The fluid regime of crystallization of water-saturated granitic and pegmatitic magmas: a physicochemical analysis,” Russ. Geol. Geophys. 56 (9), 1292–1307 (2015).

    Article  Google Scholar 

  12. S. Z. Smirnov, V. G. Thomas, V. S. Kamenetsky, O. A. Kozmenko, and R. R. Lager, “Hydrosilicate liquids in the system Na2O–SiO2–H2O with NaF, NaCl and Ta: Evaluation of their role in ore and mineral formation at high T and P,” Petrology 20 (3), 271–285 (2012).

    Article  Google Scholar 

  13. R. Thomas and P. Davidson, “Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite,” Mineral. Petrol. 100 (3), 227–239 (2010).

    Article  Google Scholar 

  14. R. Thomas, J. D. Webster, and W. Heinrich, “Melt inclusions in pegmatitic quartz: complete miscibility between silicate melts and hydrous fluids at low pressure,” Contrib. Mineral. Petrol. 139, 394–401 (2000).

    Article  Google Scholar 

  15. R. Thomas, P. Davidson, and E. V. Badanina, “A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems,” Mineral. Petrol. 96 (3), 129–140 (2009).

    Article  Google Scholar 

  16. V. G. Thomas, S. Z. Smirnov, O. A. Kozmenko, V. A. Drebushchak, and V. S. Kamenetsky, “Formation and properties of hydrosilicate liquids in the systems Na2O–Al2O3–SiO2–H2O and granite–Na2O–SiO2–H2O at 600oC and 1.5 kbar,” Petrology 22 (3), 293–309 (2014).

    Article  Google Scholar 

  17. V. E. Zagorsky, I. S. Peretyazhko, and B. M. Shmakin, Granite Pegmatites. Volume 3. Miarolitic Pegmatites (Novosibirsk, Nauka, 1999) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to academician L.N. Kogarko for useful consultations and N.V. Sorokhtina for cooperation.

Funding

This study was supported in part by Research Program no. 0330-2014-0005 of the Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Gerasimova, V. Yu. Prokof’iev, S. Z. Smirnov or T. N. Kovalskaya.

Additional information

Translated by A. Girnis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimova, E.I., Prokof’iev, V.Y., Smirnov, S.Z. et al. High-Temperature Beryl from Vugless Granite Pegmatites of the Suprunovskoye Deposit, Irkutsk Oblast, Russia. Geochem. Int. 57, 829–834 (2019). https://doi.org/10.1134/S001670291907005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291907005X

Keywords:

Navigation