Skip to main content
Log in

REE–Th Systematics of the Suspended Particulate Matter and Bottom Sediments from the Mouth Zones of the World Rivers of Different Categories/Classes and Some Large Russian Arctic Rivers

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The distribution of the rare-earth elements (REE) and Th in the suspended particulate matter (SPM) of some large Russian Arctic rivers and in the bottom sediments from the mouth zones of the world rivers of large categories/classes is compared. It is concluded that the fine-grained (pelite and silt-pelite) material of the Russian Arctic rivers belongs mainly to classes 1 + 2 (large rivers and rivers draining areas made up mainly of sedimentary rocks) and 4 (SPM of rivers draining volcanic areas) of the world rivers. The SPM similar in terms of REE and Th distribution to the bottom sediments of the mouth zones of category/class 3 (rivers draining mainly metamorphic/magmatic terranes) are not typical of the Russian Arctic rivers, except for the SPM of the Lena River similar in terms of (La/Yb)N and Eu/Eu* ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. #LREE is the sum of La, Ce, Pr, Nd, Sm, and Eu contents, HREE is the sum of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu contents; ##LREE is the sum of La, Ce, Pr, and Nd contents, HREE is the sum of Er, Tm, Yb, and Lu contents; ###LREE is the sum of chondrite-normalized La, Ce, Pr, Nd, Sm, and Eu (Taylor and McLennan, 1985), HREE is the sum of chondrite-normalized Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu contents.

  2. Since REE data on modern bottom sediments of the Russian Arctic seas and large rivers flowing into them due to different reasons are incomplete in many publications, the value of Eu anomaly is taken to be (Eu/Sm)N (Dubinin, 2006) instead of generally accepted Eu/Eu* = EuN/√SmN × GdN, where “N” marks normalizing to chondrite values (Taylor and McLennan, 1985).

REFERENCES

  1. E. E. Asadulin, A. Y. Miroshnikov, and V. I. Velichkin, “Geochemical signature of bottom sediments in the mixing zones of Ob and Yenisei waters with Kara Sea water,” Geochem. Int. 51(12), 1005–1018 (2013).

    Article  Google Scholar 

  2. En. E. Asadulin, A. Yu. Miroshnikov, A. A. Usacheva, and V. I. Velichkin, “Geochemical recognition of terrigeneous material from the Ob and Yenisei rivers in bottom sediments of the eastern part of the Kara Sea,” Dokl. Earth Sci. 461, 270–272 (2015).

  3. A. S. Astakhov, M. V. Ivanov, W. Rujian, K. Crane, and G. Aiguo, “Lithochemical classification of the arctic depositional environments (Chukchi Sea) by methods of multivariate statistic,” Geochem. Int. 51 (4), 269–289 (2013).

    Article  Google Scholar 

  4. G. Bayon, S. Toucanne, C. Skonieczny, L. Andre, S. Bermell, S. Cheron, B. Dennielou, J. Etoubleau, N. Freslon, T. Gauchery, Y. Germain, S. J. Jorry, G. Menot, L. Monin, E. Ponzevera, M.–L. Rouget, K. Tachikawa, and J. A. Barrat, “Rare earth elements and neodymium isotopes in world river sediments revisited,” Geochim. Cosmochim. Acta 170, 17–38 (2015).

    Article  Google Scholar 

  5. J. Bischof, J. Koch, M. Kubisch, R. F. Spielhagen, and J. Thiede, “Nordic seas surface ice drift reconstructions: evidence from ice rafted coal fragments during oxygen isotope stage 6,” Glaciomarine Environments: Processes and Sediments, Ed. by J. A. Dowdeswell and J. D. Scourse, Geol. Soc. Spec. Publ. 53, 235–251 (1990).

  6. Z. Chen, A. Gao, Y. Liu, H. Sun, X. Shi, and Z. Yang, “REE geochemistry of surface sediments in the Chukchi Sea,” Sci. China, Ser. D: Earth Sci. 46 (6), 603–611 (2003).

    Article  Google Scholar 

  7. K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  8. D. A. Darby, W. B. Myers, M. Jakobsson, and I. Rigor, “Modern dirty sea ice characteristics and sources: the role of anchor ice,” J. Geophys. Res. 116, C09008 (2011). https://doi.org/10.1029/2010JC006675

    Article  Google Scholar 

  9. D. Dethleff and G. Kuhlmann, “Fram Strait sea–ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source areas,” Polar Res. 29, 265–282 (2010).

    Article  Google Scholar 

  10. A. V. Dubinin, Rare Earth Element Geochemistry of Ocean (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  11. B. Dupré, J. Gaillardet, D. Rousseau, and C. J. Allegre, “Major and trace elements of river borne material: the Congo basin,” Geochim. Cosmochim. Acta 60 (8), 1301–1321 (1996).

    Article  Google Scholar 

  12. N. I. Filatova, Perioceanic Volcanogenic Belts (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  13. J. Gaillardet, B. Dupré, and C. J. Allegre, “A global geochemical mass budget applied to the Congo basin rivers: erosion rates and continental crust composition,” Geochim. Cosmochim. Acta 59, 3469–3485 (1995).

    Article  Google Scholar 

  14. J. Gaillardet, B. Dupré, and C. J. Allegre, “Geochemistry of large river suspended sediments: silicate weathering or recycling tracer?,” Geochim. Cosmochim. Acta 63, 4037–4052 (1999).

    Article  Google Scholar 

  15. S. Gallet, B. M. Jahn, B. V. V. Lanoe, A. Dia, and E. Rossello, “Loess geochemistry and its implications for particle origin and composition of the upper continental crust,” Earth Planet. Sci. Lett. 156, 157–172 (1998).

    Article  Google Scholar 

  16. Geographic Atlas of Russia (Kartografiya, Moscow, 1997) [in Russian].

  17. S. J. Goldstein and S. B. Jacobsen, “Rare earth elements in river waters,” Earth Planet. Sci. Lett. 89, 35–47 (1988).

    Article  Google Scholar 

  18. V. V. Gordeev and V. P. Shevchenko, “Chemical composition of suspended sediments in the Lena River and its mixing zone,” Berichte zur Polar– und Meeresforschung. 176, 154–169 (1995).

  19. V. V. Gordeev and A. P. Lisitsin, “Geochemistry of the surface later of bottom sediments of the White Sea,” White Sea System (Nauchnyi Mir, Moscow, 2017), Vol. 4, pp. 576–644 [in Russian].

    Google Scholar 

  20. V. V. Gordeev, B. Beeskow, V. Rachold, “Geochemistry of the Ob and Yenisei estuaries: a comparative study,” Berichte zur Polar– und Meeresforschung. 565, (2007).

  21. L. P. Gromet, R. F. Dymek, L. A. Haskin, and R. L. Korotev, “The “North American shale composite”: Its compilation, major and trace element characteristics,” Geochim. Cosmochim. Acta 48, 2469–2482 (1984).

    Article  Google Scholar 

  22. M. G. Gubaidullin, “Main data on the geological structure of the eastern drainage area of the White Sea,” White Sea System. Volume 1. Natural Environment of the White Sea Drainage Area (Nauchnyi Mir, Moscow, 2017), pp. 40–57 [in Russian].

  23. E. G. Gurvich, A. B. Isaeva, L. V. Demina, M. A. Levitan, and K. G. Muravi’ev, “Chemical composition of bottom sediments of the Kara Sea and Ob and Yenisei estuaries,” Okeanologiya 34 (5), 766–775 (1994).

    Google Scholar 

  24. M. A. Haskin and L. A. Haskin, “Rare earths in European shales: a redetermination,” Science 154, 507–509 (1966).

    Google Scholar 

  25. L. A. Haskin, T. R. Wildeman, F. A. Frey, K. A. Collins, C. R. Keedy, and M. A. Haskin, “Rare earths in sediments,” J. Geophys. Res. 71, 6091–6105 (1966).

    Article  Google Scholar 

  26. J. A. Hölemann, M. Schirmacher, H. Kassens, and A. Prange, “Geochemistry of surficial and ice–rafted sediments from the Laptev Sea (Siberia),” Estuarine, Coastal and Shelf Science 49, 45–59 (1999).

    Article  Google Scholar 

  27. B. M. Jahn, S. Gallet, and J. M. Han, “Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka,” Chem. Geol. 178, 71–94 (2001).

    Article  Google Scholar 

  28. B. S. Kamber, A. Greig, and R. D. Collerson, “A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia,” Geochim. Cosmochim. Acta 69, 1041–1058 (2005).

    Article  Google Scholar 

  29. A. N. Kolesnik, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (TOI DVO RAN, Vladivostok, Russia) [in Russian].

  30. M. A. Levitan, V. M. Dekov, Z. N. Gorbunova, E. G. Gurvich, S. I. Muyakshin, D. Nürnberg, M.A. Pavlidis, N. P. Ruskova, E. S. Shelekhova, A. V. Vasilkov, and M. Wahsner, “The Kara Sea: A reflection of modern environment in grain size, mineralogy, and chemical composition of the surface layer of bottom sediments,” Surface–sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin, Ed. by R. Stein, G. I. Ivanov, M. A.Levitan, and K. Fahl, Berichte zur Polarforschung 212, 58–76 (1996).

  31. M. Levitan, G. Kolesov, and M. Chudetsky, “Chemical characteristics of main lithofacies based on instrumental neutron–activation analysis data,” Scientific Cruise Report of the Kara–Sea Expedition 2001 of RV “Akademik Boris Petrov”: The German–Russian Project on Siberian River Runoff (SIRRO) and the EU Project “ESTABLISH”, Ed. by R. Stein and O. Stepanets, Ber. Polarforsch. 419, 101–111 (2002).

  32. M. A. Levitan, M. V. Bourtman, L. L. Demina, M. Yu. Chedetskii, and F. Schoster, “Facies variability of surface sediments from the Ob–Yenisei shoal and the Ob and Yenisei estuaries,” Lithol. Mineral Resour. 40 (5), 408–419 (2005).

    Article  Google Scholar 

  33. M. A. Levitan, Yu. A. Lavrushin, and R. Stein, Essays on the Sedimentation History in the Arctic Ocean and Subrarctic Seas During Last 130 kyr (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  34. A. P. Lisitsin, “Marginal filters of oceans,” Okeanologiya 34(5), 735–747 (1994).

    Google Scholar 

  35. A. P. Lisitsin, “Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes,” Russ. Geol. Geophys. 51 (1), 12–47 (2010).

    Article  Google Scholar 

  36. A. P. Lisitsin, E. G. Gurvich, V. N. Lukashin, I. B. Zverinskaya, and A. D. Kurinov, Geochemistry of Hydrolyzate Elements (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  37. A. P. Lisitzin and V. P. Shevchenko, Glacial–marine sedimentation. Encyclopedia of Marine Geosciences, Ed. by J. Harff, M. Meschede, S. Petersen, and J. Thiede (Springer Science + Business Media, Dordrecht, 2016), pp. 288–294.

  38. V. N. Lukashin, S. V. Lyutsarev, A. D. Krasnyuk, V. P. Shevchenko, and V. Yu. Rusakov, “Suspended matter in estuaries of the Ob’ and Yenisei rivers: data from the 28th cruise of R/V Akademik Boris Petrov,” Geochem. Int. 38 (12), 1221–1236 (2000).

    Google Scholar 

  39. J.-M. Martin and M. Meybeck, “Elemental mass–balance of material carried by major world rivers,” Mar. Chem. 7, 173–206 (1979).

    Article  Google Scholar 

  40. J. M. Martin, O. Hogdahl, and J. C. Philippot, “Rare earth element supply to the ocean,” J. Geophys. Res. 81 (18), 3119–3124 (1976).

    Article  Google Scholar 

  41. N. C. Martinez, R. W. Murray, G. R. Dickens, and M. Kolling, “Discrimination of sources of terrigenous sediment deposited in the central Arctic Ocean through the Cenozoic,” Paleoceanography 24, PA1210, (2009). https://doi.org/10.1029/2007PA001567

    Google Scholar 

  42. A. V. Maslov, V. P. Shevchenko, Yu. L. Ronkin, O. P. Lepikhina, A. N. Novigatskii, A. S. Filippov, and N. V. Shevchenko, “Systematics of Th, Cr, Hf, Co, and Rare-Earth Elements in Modern Bottom Sediments of the White Sea and Lower Reaches of the Severnaya Dvina River,” Dokl. Earth Sci. 443, 371–376 (2012).

    Article  Google Scholar 

  43. A. V. Maslov, V. P. Shevchenko, Yu. L. Ronkin, O. P. Lepikhina, A. N. Novigatsky, A. S. Filippov, and N. V. Shevchenko, “Peculiarities of the rare-earth element distribution in the modern bottom sediments of the White Sea and the lower reaches of the Severnaya Dvina river,” Oceanology 53 (6), 702–714 (2013).

    Article  Google Scholar 

  44. A. V. Maslov, V. P. Shevchenko, V. N. Podkovyrov, Yu. L. Ronkin, O. P. Lepikhina, A. N. Novigatsky, A. S. Filippov, and N. V. Shevchenko, “Specific features of the distribution of trace and rare earth elements in recent bottom sediments in the lower course of the Severnaya Dvina River and White Sea,” Lithol. Miner. Resour. 49 (6), 433–460 (2014).

    Article  Google Scholar 

  45. A. V. Maslov, N. V. Kozina, A. A. Klyuvitkin, A. N. Novigatsky, A. S. Filippov, and V. P. Shevchenko, “Distribution of some rare and trace elements in modern bottom sediments of the Caspian Sea,” Oceanology 56 (4), 552–563 (2016).

    Article  Google Scholar 

  46. A. A. Migdisov, Yu. A. Balashov, I. V. Sharkov, O. G. Sherstennikov, and A. B. Ronov, “Distribution of rare-earth elements in major lithological types of the rocks of sedimentary cover of the Russian Platform,” Geokhimiya, No. 6. 789–803(1994).

    Google Scholar 

  47. R. Millot, J. Gaillardet, B. Dupré, and C. J. Allegre, “Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada,” Geochim. Cosmochim. Acta 67, 1305–1329 (2003).

    Article  Google Scholar 

  48. N. P. Morozov, G. N. Baturin, V. V. Gordeev, and E. G. Gurvich, “On composition of suspended particulate matter and sediments of the mouth areas of the Severnaya Dvina, Mezen, Pechora, and Ob,” Gidrokhim. Mater. 60, 60–73 (1974).

    Google Scholar 

  49. W. B. Nance, and S. R. Taylor, “Rare earth element patterns and crustal evolution – I. Australian post–Archean sedimentary rocks,” Geochim. Cosmochim. Acta 61, 1539–1551 (1976).

    Article  Google Scholar 

  50. P. Negrel, M. Sadeghi, A. Ladenberger, C. Reimann, and M. Birke, “GEMAS Project Team Geochemical fingerprinting and source discrimination of agricultural soils at continental scale,” Chem. Geol. 396, 1–15 (2015).

    Article  Google Scholar 

  51. S. Pfirman, M. A.Lange, I. Wollenburg, and P. Schlosser, “Sea ice characteristics and the role of sediment inclusions in deep–sea deposition: Arctic–Antarctic comparison,” Geological history of the polar oceans: Arctic versus Antarctic, Ed. by U. Bleil and J. Thiede (Kluwer Academic Publishers, Dordrecht, 1990), pp. 187–211.

    Google Scholar 

  52. A. Pourmand, N. Dauphas, and T. J. Ireland, “A novel extraction chromatography and MC–ICP–MS technique for rapid analysis of REE, Sc and Y: revising CI–chondrite and Post–Archean Australian Shale (PAAS) abundances,” Chem. Geol. 291, 38–54 (2012).

    Article  Google Scholar 

  53. V. Rachold, A. Alabyan, H.–W. Hubberten, V. N. Korotaev, and A. A. Zaitsev, “Sediment transport to the Laptev Sea–hydrology and geochemistry of the Lena River,” Polar Research 15 (2), 183–196 (1996).

    Google Scholar 

  54. V. Rachold, “Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Laptev Sea,” Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Ed. by H. Kassens, H. A. Bauch, I. A. Dmitrenko, H. Eicken, H.-W. Hubberten, M. Melles, J. Thiede, and L. A. Timokhov, (Springer, Berlin, 1999), pp. 199–222.

    Google Scholar 

  55. S. W. Reeder, B. Hitchon, and A.A. Levinson, “Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada–I. Factors controlling inorganic composition,” Geochim. Cosmochim. Acta 36, 825–865 (1972).

    Article  Google Scholar 

  56. C. Reimann, P. de Caritat, GEMAS Project Team, and NGSA Project Team, “New soil composition data for Europe and Australia: demonstrating comparability, identifying continental–scale processes and learning lessons for global geochemical mapping,” Sci. Total Environ. 416, 239–252 (2012).

    Article  Google Scholar 

  57. E. Reimnitz, D. Dethleff, and D. Nürnberg, “Contrasts in Arctic shelf sea–ice regimes and some implications: Beaufort Sea versus Laptev Sea,” Mar. Geol. 119, 215–225 (1994).

    Article  Google Scholar 

  58. E. A. Romankevich and A. A. Vetrov, Carbon Cycles in the Russian Arctic Seas (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  59. A. S. Ruban, Extended Abstract of Candidate’s Science in Geology and Mineralogy (Tomsk Politekh. Univ., Tikhookean. Okeanol. Inst., Tomsk–Vladivostok, 2017) [in Russian].

    Google Scholar 

  60. R. L. Rudnick and S. Gao, “Composition of the continental crust,” Treatise on Geochemistry 3, 1–64 (2003).

    Google Scholar 

  61. V. S. Savenko, Chemical Composition of Suspended Load of the World’s Rivers (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  62. V. S. Savenko, O. S. Pokrovsky, B. Dupré, and G. N. Baturin, “Chemical composition of suspended material in large rivers of Russia and adjacent countries,” Dokl. Earth Sci. 398, 97–101 (2004).

    Google Scholar 

  63. H. T. Shacklette and J. G. Boerngen, “Element concentrations in soils and other surficial materials of the conterminous United States: an account of the concentrations of 50 chemical elements of soils and other regoliths,” U.S. Geol. Surv. Prof. Pap. 1270, (1984).

  64. R. B. Shakirov, A. V. Sorochinskaya, A. I. Obzhirov, and N. V. Zarubina, “Gas-geochemical features of sediments of the East Siberian Sea,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 6, 101–108 (2010).

    Google Scholar 

  65. D. M. Shaw, G. A. Reilly, J. R. Muysson, G. E. Pattenden, and F. E. Campbell, “An estimate of the chemical composition of the Canadian Precambrian shield,” Can. J. Earth Sci. 4, 829–853 (1967).

    Article  Google Scholar 

  66. D. M. Shaw, J. Dostal, and R. R. Keays, “Additional estimates of continental surface Precambrian shield composition in Canada,” Geochim. Cosmochim. Acta 40, 73–83 (1976).

    Article  Google Scholar 

  67. V. P. Shevchenko, O. V. Severina, N. G. Maiorova, and G. V. Ivanov, “Quantitative distribution and composition of suspended particulate matter in the Ob and Yenisei estuaries,” Vestn. Mosk. Univ., Ser. 4. Geol., No. 3, 81–86 (1996).

  68. V. P. Shevchenko, O. S. Pokrovsky, A. S. Filippov, A. P. Lisitsyn, V. A. Bobrov, A. Yu. Bogunov, N. N. Zavernina, E. O. Zolotykh, A. B. Isaeva, N. M. Kokryatskaya, V. B. Korobov, M. D. Kravchishina, A. N. Novigatsky, and N. V. Politova, “On the elemental composition of suspended matter of the Severnaya Dvina River (White Sea Region),” Dokl. Earth Sci. 430, 228–234 (2010).

    Article  Google Scholar 

  69. V. P. Shevchenko, A. V. Maslov, A. P., Lisitsin, A. N. Novigatskii, and R. Stein “Element composition of sedimentary material of the Arctic drifting ices,” Geogr. Polyar. Regionov (Ser. Vopr. Geograf.), (Kodeks, Moscow, 2016), Vol. 142, pp. 390–413 [in Russian].

    Google Scholar 

  70. V. P. Shevchenko, A. V. Maslov, A. P., Lisitsin, A. N. Novigatskii, and R. Stein, “Systematics of Cr, Co, and rare-earth elements in ice-rafting sedimentary material of the northern part of the Beaufort Gyre,” Litosfera, No. 3, 59–70 (2017a).

    Article  Google Scholar 

  71. V. P. Shevchenko, A. V. Maslov and R. Stein, “Distribution of some rare and trace elements in ice-rafted sediments in the Yermak Plateau area, the Arctic Ocean,” Oceanology 57 (6), 855–863 (2017b).

    Article  Google Scholar 

  72. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell Scientific Publications, Oxford, 1985).

    Google Scholar 

  73. J. Viers, B. Dupre, and J. Gaillardet, “Chemical composition of suspended sediments in World Rivers: new insights from a new database,” Sci. Total Environ. 407, 853–868 (2009).

    Article  Google Scholar 

  74. C. Viscosi-Shirley, “Siberian–Arctic shelf surface–sediments: sources, transport pathways and processes, and diagenetic alteration,” A dissertation Doctor of Philosophy in Oceanography (Oregon State University, 2001).

  75. C. Viscosi-Shirley, N. Pisias, and K. Mammone, “Sediment source strength, transport pathways and accumulation patterns on the Siberian–Arctic’s Chukchi and Laptev shelves,” Continental Shelf Res. 23, 1201–1225 (2003).

    Article  Google Scholar 

  76. White Sea System. Volume 1. Natural Environment of the White Sea Drainage Area (Nauchnyi Mir, Moscow, 2010) [in Russian].

  77. D. S. Yashin, “Holocene sedimentogenesis of the Russian Arctic seas,” Geologial–Geophysical Characteristics of the Lithosphere of the Arctic Region (VNIIOkeanologiya, St. Petersburg, 2000), pp. 57–67 [in Russian].

Download references

ACKNOWLEDGMENTS

We are grateful to N.S. Glushkova for the assistance in the preparation of graphical material for this paper. The valuable comments of reviewers significantly improved our manuscript.

The studies were carried out in the frameworks of the State Task (theme no. 0149-2018-0016) and were financially supported by projects of the Ural Branch of the Russian Academy of Sciences (project nos. 15-15-5-4 and 18-9-5-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maslov or V. P. Shevchenko.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V., Shevchenko, V.P. REE–Th Systematics of the Suspended Particulate Matter and Bottom Sediments from the Mouth Zones of the World Rivers of Different Categories/Classes and Some Large Russian Arctic Rivers. Geochem. Int. 57, 56–73 (2019). https://doi.org/10.1134/S0016702919010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919010075

Keywords:

Navigation