Geochemistry International

, Volume 56, Issue 13, pp 1354–1367 | Cite as

Simultaneous Calculation of Chemical and Isotope Equilibria Using the GEOCHEQ_Isotope Software: Carbon Isotopes

  • M. V. MironenkoEmail author
  • V. B. PolyakovEmail author
  • M. V. Alenina


The program package GEOCHEQ_Isotope was developed for the simultaneous calculation of chemical and isotope equilibria in hydrothermal and hydrochemical systems by the method of Gibbs free energy minimization. It utilizes the formalism of the β-factor and is a modification of the GEOCHEQ software, which was designed to calculate chemical equilibria. An algorithm was proposed for the calculation of the Gibbs free energy of formation of a rare isotopologue, G*(P, T), from the Gibbs free energy of formation of the main isotopologue, the β-factor of this substance, and the mass ratio of the rare and main isotopes of the element. The ideal mixing of isotopes was assumed. The temperature dependence of the β-factor was unified as a polynomial in reciprocal absolute temperature. The implementation of the software and an appropriate database was illustrated by the example of carbon isotopes. The available information on carbon isotope equilibria involving geochemically important compounds was critically analyzed, and temperature dependences of their β-factors were correspondingly optimized. The thermodynamic database was updated by adding information on the temperature dependence of β-factors specified by eight polynomial coefficients for each substance. The use of the GEOCHEQ_Isotope was exemplified calculating the equilibrium compositions of phases and carbon isotope fractionations in carbonate hydrothermal systems with and without iron at pH ranging from 4 to 11.


chemical and isotope equilibria Gibbs free energy minimization β-factor carbon isotope fractionation 



We are grateful to Prof. D.V. Grichuk for insightful discussions, helpful comments, and careful reviewing of the manuscript.


  1. 1.
    L. N. Bannikova, D. V. Grichuk, and B. N. Ryzhenko, “Calculation of chemical and isotope equilibria in the C–H–O system with application to the study of redox reactions under hydrothermal conditions,” Geokhimiya, no. 3, 416–428 (1987).Google Scholar
  2. 2.
    J. Bigeleisen and M. G. Mayer, “Calculation of equilibrium constants for isotopic exchange reactions,” J. Phys. Chem. 13, 261–267 (1947).CrossRefGoogle Scholar
  3. 3.
    M. Blanchard, F. Poitrasson, M. Méheut, M. Lazzeri, F. Mauri, and E. Balan, “Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): A first-principles density functional theory study,” Geochim. Cosmochim. Acta 73, 6565–6578 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. Bottinga, “Calculation of fractionation factors for carbon and oxygen isotope exchange in the system calcite–carbon dioxide–water,” J. Phys. Chem. 72, 800–808 (1968).CrossRefGoogle Scholar
  5. 5.
    A. Yu. Bychkov, S. S. Matveeva, T. M. Suchchevskaya, S. Yu. Nekrasov, and A. V. Ignat’ev, “Isotopic–geochemical criteria of the filtration dynamics of heterogeneous fluid at greisen mineral deposits,” Geochem. Int. 50 (11), 952–957 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Chacko, T. K. Mayeda, R. N. Clayton, and J. R. Goldsmith, “Oxygen and carbon isotope fractionation between CO2 and calcite,” Geochim. Cosmochim. Acta 55, 2867–2882 (1991).CrossRefGoogle Scholar
  7. 7.
    T. Chacko, D. R. Cole, and J. Horita, “Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems,” Rev. Mineral. Geochem. 43, 1–81 (2001).CrossRefGoogle Scholar
  8. 8.
    C. P. Courtoy, “Spectres de vibration–rotation de molecules simples diatomiques ou polyatomiques avec long parcours d’absorption,” Can. J. Phys. 35, 608–648 (1957).CrossRefGoogle Scholar
  9. 9.
    C. P. Courtoy, “Spectre infrarouge a grande dispersion et constants moleculaires du CO2,” Ann. Soc. Sci. Bruxelles 73, 5–230 (1959).Google Scholar
  10. 10.
    de Capitani C. and T. H. Brown, “The computation of chemical equilibrium in complex systems containing nonideal solutions,” Geochim. Cosmochim. Acta. 51. 2639–2152 (1987).CrossRefGoogle Scholar
  11. 11.
    P. Deines, “Carbon isotope effects in carbonate systems,” Geochim. Cosmochim. Acta 68, 2659–2679 (2004).CrossRefGoogle Scholar
  12. 12.
    P. Deines and D. H. Eggler, “Experimental determination of carbon isotope fractionation between CaCO3 and graphite,” Geochim. Cosmochim. Acta 73, 7256–7274 (2009).CrossRefGoogle Scholar
  13. 13.
    S. R. Dunn and J. W. Valley, “Calcite–graphite isotope thermometry: a test for polymetamorphism in marbles, Tudor gabbro aureole, Ontario, Canada,” J. Metamorph. Geol. 10, 487–501 (1992).CrossRefGoogle Scholar
  14. 14.
    M. E. Elyashberg, Yu. Z. Karasev, V. A. Dement’ev, and L. A. Gribov, Interpreted Oscillatory Spectra of Hydrocarbons—Derivatives of Cyclohexane and Cyclopentane (Nauka, Moscow, 1988) [in Russian].Google Scholar
  15. 15.
    Galimov, E. M. Carbon Isotopes in Petroleum Geology (Nedra, Moscow, 1973) [in Russian].Google Scholar
  16. 16.
    E. M. Galimov, “Approximate method for determining thermodynamic isotope factors for carbon compounds,” Zh. Fiz. Khimii 48, 290–296 (1974).Google Scholar
  17. 17.
    E. M. Galimov, “Additivity principle in isotope thermodynamics,” Geokhimiya, No. 6, 767–779 (1982).Google Scholar
  18. 18.
    E. M. Galimov, “Organic isotope geochemistry,” Vestn. Ross. Akad. Nauk 76, 978–988 (2006).Google Scholar
  19. 19.
    P. Gillet, P. McMillan, J. Schott, J. Badro, and A. Grzechnik, “Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 18O-substituted calcite,” Geochim. Cosmochim. Acta 60, 3471–3485 (1996).CrossRefGoogle Scholar
  20. 20.
    S. I. Golyshev, and S. A. Pechenkin, “Fractionation of stable oxygen and carbon isotopes in carbonate systems,”Geokhimiya, No. 10, 1427–1441 (1981).Google Scholar
  21. 21.
    L. A. Gribov and V. A. Dement’ev, Numerical Modeling of Oscillatory Spectra of Complex Compounds (Nauka, Moscow, 1989).Google Scholar
  22. 22.
    L. A. Gribov, V. A. Dement’ev, and A. T. Todorovskii, Interpreted Oscillatory Spectra of Alkanes, Alkenes, and Benzene Derivatives (Nauka, Moscow, 1986) [in Russian].Google Scholar
  23. 23.
    L. A. Gribov, V. A. Dement’ev, and O. V. Novoselov, Interpreted Oscillatory Hydrocarbon Spectra with Isolated and Conjugate Multiple Bonds (Nauka, Moscow, 1987) [in Russian].Google Scholar
  24. 24.
    D. V. Grichuk, “Assessment of the Gibbs free energy of isotope compounds,” Geokhimiya, No. 2, 178–191 (1987).Google Scholar
  25. 25.
    D. V. Grichuk, “Isotope-chemical thermodynamic model of the hydrothermal system,” Dokl. Akad. Nauk SSSR 298, 1222–1225 (1988).Google Scholar
  26. 26.
    D. V. Grichuk, Thermodynamic Model of Submarine Hydrothermal Systems (Nauchnyi Mir, Moscow, 2000) [in Russian].Google Scholar
  27. 27.
    D. V. Grichuk, and A. Yu. Lein, “Evolution of oceanic hydrothermal system and sulfur isotope composition of sulfides,” Dokl. Akad. Nauk SSSR, 318, 422–425 (1991).Google Scholar
  28. 28.
    S. Halas, J. Szaran, and H. Niezgoda, “Experimental determination of carbon isotope equilibrium fractionation between dissolved carbonate and carbon dioxide,” Geochim. Cosmochim. Acta 61, 2691–2695 (1997).CrossRefGoogle Scholar
  29. 29.
    J. Horita, “Carbon isotope exchange in the system CO2–CH4 at elevated temperatures,” Geochim. Cosmochim. Acta 65, 1907–1919 (2001).CrossRefGoogle Scholar
  30. 30.
    J. Horita, “Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures,” Geochim. Cosmochim. Acta. 129, 111–124 (2014).CrossRefGoogle Scholar
  31. 31.
    I. Jobard and A. Chedin, “Critical analysis of the series expansion of the potential energy function of CO2,” J. Mol. Spectroscop. 57, 587–597 (1975).CrossRefGoogle Scholar
  32. 32.
    J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCR-T92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C,” Comp. Geosci. 18, 899–947 (1992).CrossRefGoogle Scholar
  33. 33.
    S. W. Kieffer, “Thermodynamic and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates models,” Rev. Geophys. Space Phys. 17, 35–59 (1979).CrossRefGoogle Scholar
  34. 34.
    S. W. Kieffer, “Thermodynamics and lattice vibrations of minerals: 5. Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties,” Rev. Geophys. Space Phys. 20, 827–849 (1982).CrossRefGoogle Scholar
  35. 35.
    N. E. Kitchen and J. M. Valley, “Carbon isotope thermometry in marbles of the Andirondack Mountains, New York,” J. Metamorphic Geol. 13, 577–594 (1995).CrossRefGoogle Scholar
  36. 36.
    S. D. Malinin, O. I. Kropotova, and V. A. Grinenko, “Experimental determination of constants of carbon isotope exchange in the CO2(g)–H\({\text{CO}}_{{3({\text{s}})}}^{ - }\) system under hydrothermal conditions,” Geokhimiya, no. 8, 927–935 (1967).Google Scholar
  37. 37.
    S. S. Matveeva and A. Yu. Bychkov, “Carbon isotope fractionation in fluids during the formation of the Spokoinoe wolframite deposit,” Dokl. Earth Sci. 381A (9), 1057–1059 (2001).Google Scholar
  38. 38.
    M. V. Mironenko, N. N. Akinfiev, and T. Yu. Melikhova, “GEOCHEQ—a complex for thermodynamic modeling of geochemical processes,” Vestn. OGGGN RAN 5 (15), (2000). URL: http: // h_dggms/5_000/term10).Google Scholar
  39. 39.
    W. G. Mook, J. C. Bommerson, and W. H. Staverman, “Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide,” Earth Planet. Sci. Lett. 22, 169–176 (1974).CrossRefGoogle Scholar
  40. 40.
    T. Morikiyo, “Carbon isotopic study on coexisting calcite and graphite in the Ryoke metamorphic rocks, northern Kiso district, central Japan,” Contrib. Mineral. Petrol. 87, 251–259 (1984).CrossRefGoogle Scholar
  41. 41.
    D. A. Northrop and R. N. Clayton, “Oxygen-isotope fractionations in systems containing dolomite,” J. Geol. 74, 174–196 (1966).CrossRefGoogle Scholar
  42. 42.
    H. Ohmoto, “Systematics of sulfur and carbon isotopes in hydrothermal ore deposits,” Econ. Geol. 67, 551–578 (1972).CrossRefGoogle Scholar
  43. 43.
    H. Omoto and R. O. Rye, “Isotopes of sulfur and carbon,” in Geochemistry of Hydrothermal Ore Deposits, Ed. by H.L. Barnes (Wiley Intersci., New York, 1979), pp. 509–567.Google Scholar
  44. 44.
    A. Patel, G. D. Price, and M. J. Mendelssohn, “A computer simulation approach to modeling the structure, thermodynamics and oxygen isotope equilibria of silicates,” Phys. Chem. Minerals 17, 690–699 (1991).CrossRefGoogle Scholar
  45. 45.
    V. B. Polyakov, “Isotope factor of compounds containing several atoms of the same element,” Geokhimiya, No. 7, 1040–1044 (1987).Google Scholar
  46. 46.
    V. B. Polyakov, “Quantostatistic consideration of the method of isotope numbers of bonds,” Zh. Fiz Khim. 65, 1317–1326 (1991).Google Scholar
  47. 47.
    V. B. Polyakov, “Ideality of isotope mixtures in solids,” Zh. Fiz Khim. 67, 470–473 (1993).Google Scholar
  48. 48.
    V. B. Polyakov, Extended Abstract of Doctoral Dissertation in Chemistry (GEOKHI RAS, Moscow, 1996).Google Scholar
  49. 49.
    V. B. Polyakov, “Equilibrium factors of isotope fractionation of calcite,” Experimental Studies of Endogenous Processes. On the Memory of Academician V. A. Zharikov, Ed. by I.D. Ryabchikov, Yu.B. Shapovalov, and E.G. Osadzhii (IPKHF RAS, Chernogolovka, 2008), pp. 204–216 [in Russian].Google Scholar
  50. 50.
    V. B. Polyakov and N. N. Kharlashina, “The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond, and carbon dioxide: a new approach,” Geochim. Cosmochim. Acta 59, 2561–2572 (1995).CrossRefGoogle Scholar
  51. 51.
    V. Yu. Prokof’ev, N. S. Bortnikov, V. A. Kovalenker, S. F. Vinokurov, L. D. Zorina, A. D. Chernova, S. G. Kryazhev, A. N. Krasnov, and S. A. Gorbacheva, “The Darasun gold deposit, Eastern Transbaikal region: chemical composition, REE patterns, and stable carbon and oxygen isotopes of carbonates from ore veins,” Geol. Ore Deposits 52 (2), 81–113 (2010).CrossRefGoogle Scholar
  52. 52.
    P. Richet, Y. Bottinga, and M. Javoy, “A review of hydrogen, carbon, nitrogen, oxygen, sulfur and chlorine stable isotope fractionation among gaseous molecules,” Ann. Rev. Earth Planet. Sci. 5, 65–110 (1977).CrossRefGoogle Scholar
  53. 53.
    J. R. Rustad, S. L. Nelmes, V. E. Jackson, and D. A. Dixon, “Quantum-chemical calculations of carbon-isotope fractionation in CO2(g), aqueous carbonate species, and carbonate minerals,” J. Phys. Chem. A 112, 542–555 (2008).CrossRefGoogle Scholar
  54. 54.
    E. A. Schauble, “Applying stable isotope fractionation theory to new systems,” Rev. Mineral. Geochem. 55, 65–111 (2004).CrossRefGoogle Scholar
  55. 55.
    E. A. Schauble, P. Glosh, and J. M. Eiler, “Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first principles lattice dynamics,” Geochim. Cosmochim. Acta 70, 2510–2529 (2006).CrossRefGoogle Scholar
  56. 56.
    N. Scheele and J. Hoefs, “Carbon isotope fractionation between calcite, graphite and CO2: an experimental study,” Contrib. Mineral. Petrol. 112. 35–45 (1992).CrossRefGoogle Scholar
  57. 57.
    H. C. Urey, “The thermodynamic properties of isotopic substances,” J. Chem. Soc. 562 – 581 (1947).Google Scholar
  58. 58.
    H. C. Urey and L. J. Greiff, “Isotopic exchange equilibria,” J. Amer. Chem. Soc. 57, 321–332 (1935).CrossRefGoogle Scholar
  59. 59.
    J. W. Valley, “Stable isotope geochemistry of metamorphic rocks,” Rev. Mineral. 16, 445–490 (1986).Google Scholar
  60. 60.
    J. W. Valley and J. R. O’Neil, “12C/13C exchange between calcite and graphite: a possible thermometer in Grenville marbles,” Geochim. Cosmochim. Acta 45, 411–419 (1981).CrossRefGoogle Scholar
  61. 61.
    J. C. Vogel, P. M. Grootes, and W. G. Mook, “Isotopic fractionation between gaseous and dissolved carbon dioxide,” Z. Phys. 230, 225–238 (1970).CrossRefGoogle Scholar
  62. 62.
    H. Wada and K. Suzuki, “Carbon isotopic thermometry calibrated by dolomite–calcite solvus temperatures,” Geochim. Cosmochim. Acta 47, 697–706 (1983).CrossRefGoogle Scholar
  63. 63.
    R. E. Zeebe, “Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide,” Geochim. Cosmochim. Acta 139, 540–552 (2014).CrossRefGoogle Scholar
  64. 64.
    J. P. Zhang, D. Quay, and D. O. Wilbur, “Carbon isotope fractionation during gas–water exchange and dissolution of CO2,” Geochim. Cosmochim. Acta 59, 107–114 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Korzhinskii Institute of Experimental Mineralogy, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations