Skip to main content
Log in

N–C–Ar–He Isotopic Systematics of Quenched Tholeiitic Glasses from the Bouvet Triple Junction Area

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents pioneering data on the isotopic composition and elemental ratios of nitrogen, carbon (carbon dioxide), helium, and argon in the fluid phase of quenched tholeiitic glasses from different segments of the Bouvet Triple Junction area (BTJ). The data reflect a complicated geodynamic and tectonic history of the area evolution and indicate that the variations in the elemental ratios of the volatile components of the fluid–gas phase were controlled by a number of various factors: elemental fractionation during melt degassing, mixing of gases from different sources, postmagmatic diffusion-controlled helium loss. The nitrogen–argon and noble gas isotope systematics suggest a significant contribution of the atmospheric component to the mantle source of fluids for the samples from the Spiess Ridge and the segment of the Southwest Indian Ridge (SWIR) and a smaller contribution for the Mid-Atlantic Ridge (MAR) samples. For the Spiess Ridge and SWIR, the most probable contaminating agent was water fluid with dissolved gases of atmospheric composition. This fluid may have been brought to the mantle with ancient crustal rocks involved in magma generation. These crustal rocks may represent small fragments of the Gondwana continent with which sedimentary organic matter could be brought into the magma source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. C. J. Ballentine and D. Barfod, “The origin of air-like noble gases in MORB and OIB,” Earth Planet. Sci. Lett. 180, 39–48 (2000).

    Article  Google Scholar 

  2. Z. C. Ben-Avraham, J. H. Hartnady, and J. A. Malan, “Early tectonic extension between the Agulhas Bank and the Falkland Plateau due to the rotation of the Lafonia microplate,” Earth Planet. Sci. Lett. 117, 43–58 (1993).

    Article  Google Scholar 

  3. A. I. Buikin, M. Trieloff, E. V. Korochantseva, J. Hopp, M. Kaliwoda, H.-P. Meyer, and R. Altherr, “Distribution of mantle and atmospheric argon in mantle xenoliths from the Western Arabian Peninsula: constraints on timing and composition of metasomatizing agents in the lithospheric mantle,” J. Petrol. 51, 2547–2570 (2010).

    Article  Google Scholar 

  4. A. I. Buikin, A. B. Verchovsky, V. A. Grinenko, S. A. Silantyev, V. S. Sevast’yanov, Yu. A. Nevinnyi, and E. P. Smirnova, “C, N, He, and Ar isotope and element ratios in fluid inclusions from MORB chilled glasses: stepwise crushing data,” Geochem. Int. 51 (4), 338–343 (2013).

    Article  Google Scholar 

  5. A. I. Buikin, I. P. Solovova, A. B. Verchovsky, L. N. Kogarko, and A. A. Averin, “PVT parameters of fluid inclusions and the C, O, N, and Ar isotopic composition in a garnet lherzolite xenolith from the Oasis Jetty, East Antarctica,” Geochem. Int. 52 (10) 805–821 (2014).

    Article  Google Scholar 

  6. A. I. Buikin, N. A. Migdisova, J. Hopp, E. V. Korochantseva, and M. Trieloff, “He, Ne, Ar stepwise crushing data on basalt glasses from different segments of Bouvet Triple Junction,” Geochem. Int. 55 (11), 977–987 (2017).

    Article  Google Scholar 

  7. P. G. Burnard, D. Graham, and G. Turner, “Vesicle-specific noble gas analyses of „popping rock“: Implications for primordial noble gases in Earth,” Science 276, 568–571 (1997).

    Article  Google Scholar 

  8. P. Cartigny, N. Jendrzejewski, F. Pineau, E. Petit, and M. Javoy, “Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge,” Earth Planet. Sci. Lett. 194, 241–257 (2001).

    Article  Google Scholar 

  9. J. S. Dickey, E. A. Frey, S. R. Hart, E. B. Watson, and G. Thompson, “Geochemistry and petrology of dredged basalts from the Bouvet triple junction, South Atlantic,” Geochim. Cosmochim. Acta 41, 1105–1118 (1977).

    Article  Google Scholar 

  10. E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokholskii, “The evolution of spreading ridges of the South Atlantic and spatiotemporal position of the Bouvet Triple Junction,” Russ. J. Earth Sci. 1 (5), 423–435 (1999).

    Article  Google Scholar 

  11. T. P. Fisher, P. Burnard, B. Marty, D. R. Hilton, E. F?ri, F. Palhol, Z. D. Sharp, and F. Mangasini, “Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites,” Nature 459, 77–80 (2009).

    Article  Google Scholar 

  12. A. Jambon, H. Weber, and O. Braun, “Solubilities of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C: geochemical implications,” Geochim. Cosmochim. Acta 50, 401–408 (1986).

    Article  Google Scholar 

  13. M. C. Kleinrock and J. Ph. Morgan, “Triple junction reorganization,” J. Geophys. Res. 93, 2981–2996 (1988).

    Article  Google Scholar 

  14. R. Sh. Krymsky, N. M. Sushchevskaya, B. V. Belyatsky, and N. A. Migdisova, “Peculiarities of the osmium isotopic composition of basaltic glass from the western termination of the Southwest Indian Ridge,” Dokl. Earth Sci. 428 (7) 1126–1130 (2009).

    Article  Google Scholar 

  15. M. D. Kurz, A. P. le Roex, and H. J. B. Dick, “Isotope heterogeneity near the Bouvet triple junction,” Geochim. Cosmochim. Acta. 62, 841–852 (1998).

    Article  Google Scholar 

  16. L. A. Lawver, J. G. Sclater, and L. Meinke, ”Mesozoic and Cenozoic reconstructions of the South Atlantic,” Tectonophysics 114, 233–254 (1985).

    Article  Google Scholar 

  17. A. P. Le Roex, H. J. B. Dick, A. M. Reid, F. A. Frey, and S. R. Hart, “Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees East,” J. Petrol. 24 (3) 267–318 (1983).

    Article  Google Scholar 

  18. A. P. Le Roex, H. J. B. Dick, A. M. Reid, and A. J. Erlank, “Ferrobasalts from the Spiess Ridge segment of the southwest Indian Ridge,” Earth Planet. Sci. Lett. 60, 437–451 (1982).

    Article  Google Scholar 

  19. A. P. Le Roex, H. J. B. Dick, A. M. Reid, F. A. Frey, and A. J. Erlank, “Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume,” Contrib. Mineral. Petrol. 90, 367–380 (1985).

    Article  Google Scholar 

  20. A. P. Le Roex, H. J. B. Dick, and R. T. Watkins, “Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′ E to 14°38′ E,” Contrib. Mineral. Petrol. 110, 253–268 (1992).

    Article  Google Scholar 

  21. M. Ligi, E. Bonatti, G. Bortoluzzi, G. Carrara, P. Fabretti, D. Penitenti, D. Gilod, A. Peyve, S. Skolotnev, and N. Turko, “Death and transfiguration of a triple junction in the South Atlantic,” Science 276, 243–245 (1997).

    Article  Google Scholar 

  22. M. Ligi, E. Bonatti, G. Bortoluzzi, G. Carrara, and Pl. Fabretti, “Bouvet triple junction in the South Atlantic: geology and evolution,” J. Geophys. Res. 104 (12), 29365–29385 (1999).

    Article  Google Scholar 

  23. D. P. Mattey, R. A. Exley, and C. T. Pillinger, “Isotopic composition of CO2 and dissolved carbon species in basalt glass,” Geochim. Cosmochim. Acta 53, 2377–2386 (1989).

    Article  Google Scholar 

  24. N. A. Migdisova, N. M. Sushchevskaya, A. V. Lattenen, and E. M. Mikhalsky, Variations in the composition of clinopyroxene from the basalts of various geodynamic settings of the Antarctic Region,” Petrology 12 (2), 206–224 (2004).

    Google Scholar 

  25. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D.V. Kuzmin, Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys. 58 (11) 1289–1304 (2017).

    Article  Google Scholar 

  26. Y. Nishio, T. Ishii, T. Gamo, and Y. Sano, Volatile element isotopic systematic of the Rodrigues Triple Junction Indian Ocean MORB: implications for mantle heterogeneity,” Earth Planet. Sci. Lett. 170, 241–253 (1999).

    Article  Google Scholar 

  27. A. A. Peyve, A. S. Perfil’ev, Yu. M. Pushcharovskii, V. A. Simonov, N. N. Turko, and Yu. N. Raznitsin, “The Structure of the southern end of Mid-Atlantic Ridge (the Bouvet Triple Junction),” Geotektonika 1, 40–57 (1995).

    Google Scholar 

  28. F. Pineau and M. Javoy, “Carbon isotopes and concentrations in mid-oceanic ridge basalts,” Earth Planet. Sci. Lett. 62, 239–257 (1983).

    Article  Google Scholar 

  29. F. Pineau, M. Javoy, and Y. Bottinga, “13C/12C ratios of rocks and inclusions in the popping rocks of the Mid-Atlantic ridge and their bearing on the problems of isotopic composition of deep seated carbon,” Earth Planet. Sci. Lett. 29, 413–421 (1976).

    Article  Google Scholar 

  30. J. G. Shilling, G. Thompson, R. Kinzley, and S. E. Humphris, “Hotspot-migrating ridge interaction in South Atlantic: geochemical evidence,” Nature 313, 187–191 (1985).

    Article  Google Scholar 

  31. V. A. Simonov, A. A. Peyve, V. Yu. Kolobov, A. A. Milosnov, and S. V. Kovyazin, “Magmatic and hydrothermal processes in the Bouvet triple junction region (South Atlantic),” Terra Nova. 8, 45–424 (1996).

    Article  Google Scholar 

  32. N. M. Sushchevskaya, E. V. Koptev-Dvornikov, N. A. Migdisova, and D. M. Khvorov, “Crystallization and geochemistry of tholeiitic magma at the Bouvet Triple Junction, Southwest Indian Ridge,” Russ. J. Earth Sci. 1 (3), 221–250 (1999).

    Article  Google Scholar 

  33. N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatsky, and Peyve, A. A. “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean,” Geochem. Int. 41(1) 1–20 (2003).

    Google Scholar 

  34. M. Trieloff, J. Kunz, D. A. Clague, D. Harrison, and C. J. Allegre, “The nature of pristine noble gases in mantle plumes,” Science 288, 1036–1038 (2000).

    Article  Google Scholar 

  35. A. B. Verchovsky, M. A. Sephton, I. P. Wright, and C. T. Pillinger, “Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion,” Earth Planet. Sci. Lett. 199, 243–255 (2002).

    Article  Google Scholar 

  36. A. B. Verkhovskiy, E. K. Yurgina, Yu. A. Shukolyukov, “He and Ar in Midocean ridge basalt glasses and the outgassing of mantle magmas,” Geochem. Int. 28(9) 18–28 (1991).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewer K.I. Lokhov for constructive criticism and useful suggestions, which allowed us to improve the manuscript. This study was supported by the Russian Foundation for Basic Research, project no. 16-05-00974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Buikin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buikin, A.I., Verchovsky, A.B. & Migdisova, N.A. N–C–Ar–He Isotopic Systematics of Quenched Tholeiitic Glasses from the Bouvet Triple Junction Area. Geochem. Int. 56, 1368–1383 (2018). https://doi.org/10.1134/S0016702918130037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918130037

Keywords:

Navigation