Skip to main content
Log in

Genetic Interpretation of the Distribution of PGE and Chalcogens in Sulfide-Mineralized Ultramafic Rocks from the Yoko-Dovyren Layered Intrusion

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents newly acquired data on concentrations of chalcophile elements and chalcogens (Se and Te) in sulfide-bearing rocks and Cu–Ni ores from the bottom portion of the Yoko-Dovyren Massif, northern Baikal area, Russia. Positive covariations between Pd, Pt, Au, S, and Te in the samples highlight sulfide control on the behavior of these elements, which was related to the redistribution of essentially Fe–Ni sulfide liquids at a magmatic stage. The character of relationships between Pd, Pt, Te, Cu, and S in the rocks led us to distinguish two groups of genetic trends: the first group combines samples from the chilled zone, plagioperidotites, and olivine gabbronorites that compose underlying sills in the central part of the intrusion, and the second one comprises poor and high-grade ores in the northeastern termination of the intrusion (Ozernyi Prospect). We put forward the hypothesis that the first-group trends reflect different degrees of accumulation of crystallization products of the most primitive sulfide liquids, whereas the trends of the second group pertain to sulfide matter significantly depleted in Cu, Te, and PGE. New data on Fe, Ni, Cu, Co, Se, Te, Zn, Mo, Ag, Cd, Sb, Pb, Rh, PGE, and Au concentrations in sulfides from the chilled gabbronorite and ores of the Baikalskoe deposit are presented. Results of thermodynamic modeling (with the COMAGMAT-5 program package) of sulfide saturation in the intercumulus of a primitive orthocumulate are used to reproduce the composition (Cu, Pd, Pt, Au, and Te) of the parental sulfide liquid. The model concentrations of noble metals in the sulfide are demonstrated to be one to two orders of magnitude higher than the concentrations in the “average sulfide” estimated by LA–ICP–MS. More realistic estimates for the composition of the parental sulfide liquids can be obtained by normalizing the bulk concentrations of these elements to 100% sulfide mass. These estimates are in good agreement with results from thermodynamic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The term Mss-like is used herein in the chemical context, with reference to Fe- and Ni-rich sulfide liquids. The later crystallization of the Fe- and Ni-rich solid solution (known as Mss) and Cu-rich residual melt (Iss) results in a diversity of sulfide phases with the dominance of pyrrhotite (±troilite) and pentlandite.

REFERENCES

  1. A. A. Ariskin, E. G. Konnikov, L. V. Danyushevsky, E. V. Kislov, G. S. Nikolaev, D. A. Orsoev, G. S. Barmina, and K. A. Bychkov, “The Dovyren intrusive complex: problems of petrology and Ni sulfide mineralization,” Geochem. Int. 47 (5), 425–453 (2009).

    Article  Google Scholar 

  2. A. A. Ariskin, Yu. A. Kostitsyn, E. G. Konnikov, L. V. Danyushevsky, S. Meffre, G. S. Nikolaev, A. McNeill, E. V. Kislov, and D. A. Orsoev, “Geochronology of the Dovyren Intrusive Complex, northwestern Baikal Area, Russia, in the Neoproterozoic,” Geochem. Int. 51 (11), 859–875 (2013).

    Article  Google Scholar 

  3. A. A. Ariskin, L. V. Danyushevsky, K. A. Bychkov, A. W. McNeill, G. S. Barmina, and G. S. Nikolaev, “Modeling solubility of Fe-Ni sulfides in basaltic magmas: the effect of Ni in the melt,” Econ. Geol., 108 (8), 1983–2003 (2013).

    Article  Google Scholar 

  4. A. A. Ariskin, L. V. Danyushevsky, E. G. Konnikov, R. Maas, Yu. A. Kostitsyn, S. Meffre, G. S. Nikolaev, and E. V. Kislov, “The Dovyren intrusive complex (northern Baikal region, Russia): isotope–geochemical markers of contamination of parental magmas and extreme enrichment of the source,” Russ. Geol. and Geophys. 56 (3), 411–434 (2015a).

    Article  Google Scholar 

  5. A. A. Ariskin, G. S. Nikolaev, L. V. Danyushevsky, E. V. Kislov, A. V. Malyshev, and G. S. Barmina, “A new type of low-sulfide PGE-mineralization in the primitive troctolites of the Yoko-Dovyren layered massif,” in Proceedings of 12 th All-Russia Petrographic Conference, Petrozavodsk, Russia, 2015 (Petrozavodsk, 2015), pp. 289–291 (2015b).

  6. A. A. Ariskin, E. V. Kislov, L. V. Danyushevsky, G. S. Nikolaev, M. Fiorentini, S. Gilbert, K. Goemann, and A. Malyshev, “Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (Northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy,” Mineral. Deposita 51, 993–1011 (2016).

    Article  Google Scholar 

  7. A. A. Ariskin, K. A. Bychkov, and G. S. Nikolaev, “Modeling of trace-element composition of sulfide liquid in a crystallizing basalt magma: development of the R-Factor concept,” Geochem. Int. 55 (5), 465–473 (2017).

    Article  Google Scholar 

  8. A. A. Ariskin, K. A. Bychkov, G. S. Nikolaev, and G. S. Barmina, “The COMAGMAT-5: Modeling the effect of Fe-Ni sulfide immiscibility in crystallizing magmas and cumulates,” J. Petrol. 59, 283–298 (2018a).

    Article  Google Scholar 

  9. A. A. Ariskin, G. S. Nikolaev, L. V. Danyushevsky, M. Fiorentini, E. V. Kislov, and I. V. Pshenitsyn, “Geochemical evidence for the fractionation of iridium group elements at the early stages of crystallization of the Dovyren magmas (northern Baikal area, Russia),” Russ. Geol. Geophys. 59 (5), 459–471 (2018b).

    Article  Google Scholar 

  10. A. L. Ariskin, Danyushevsky, G. Nikolaev, E. Kislov, M. Fiorentini, A. McNeill, Yu. Kostitsyn, K. Goemann, S. Feig, and A. Malyshev, “The Dovyren Intrusive Complex (Southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility,” Lithos, 302303, 242–262 (2018b).

    Article  Google Scholar 

  11. S.-J. Barnes and E. M. Ripley, “Highly siderophile and strongly chalcophile elements in magmatic ore deposits,” Rev. Mineral. Geochem. 81, 725–774 (2016).

    Article  Google Scholar 

  12. S. J. Barnes, J. E. Mungall, M. LeVaillant, B. Godel, C. M. Lesher, D. Holwell, P. C. Lightfoot, N. Krivolutskaya, and B. Wei, “Sulfide-silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: disseminated and net-textured ores,” Am. Mineral. 102, 473–506 (2017).

    Article  Google Scholar 

  13. S.-J. Barnes, H. M. Prichard, R. A. Cox, P. C. Fisher, and B. Godel, “The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits,” Chem. Geol. 248 (3–4), 295–317 (2008).

    Article  Google Scholar 

  14. S.-J. Barnes and P. C. Lightfoot, “Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents,” Econ. Geol., Ed. by J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards, 100th Anniversary Volume, 179–213 (2005).

  15. I. H. Campbell and A. J. Naldrett, “The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides,” Econ. Geol. 74 (6), 1503–1506 (1979).

    Article  Google Scholar 

  16. L. V. Danyushevsky, P. Robinson, S. Gilbert, M. Norman, R. Large, P. McGoldrick, and J. M. G. Shelley, “Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects,” Geochem. Explor. Environ. Anal. 11, 51–60 (2011).

    Article  Google Scholar 

  17. V. V. Distler, and A. G Stepin, “Low-sulfide PGE-bearing horizon of the Yoko-Dovyren layered basite–hyperbasite intrusion, Norhern Baikal region,” Dokl. Akad. Nauk 328 (4), 498-501 (1993).

    Google Scholar 

  18. S. Gilbert, L. Danyushevsky, P. Robinson, C. Wohlgemuth-Ueberwasser, N. Pearson, D. Savard, M. Norman, and J. Hanley, “A comparative study of five reference materials and the Lombard meteorite for the determination of the platinum-group elements and gold by LA-ICP-MS,” Geostand Geoanal Res. 37, 51–64 (2013).

    Article  Google Scholar 

  19. A. I. Glotov, E. V. Kislov, D. A. Orsoev, M. Yu. Podlipskii, A. P. Pertseva, and V. I. Zyuzin, “Sulfur isotope geochemistry in different types of mineralization of the Yoko-Dovyren massif, Northern Baikal region,” Geol. Geofiz., 39 (2), 228–233 (1998).

    Google Scholar 

  20. M. L. Guillong, Danyushevsky, M. Waelle, and M. Raveggi, “The effect of quadrupole ICPMS interface and ion lens design on argide formation. Implications for LA-ICPMS analysis of PGE’s in geological samples,” J. Anal. Atom. Spec. 26, 1401 (2011).

    Article  Google Scholar 

  21. D. A. Holwell and R. R. Keays, “The formation of low-volume, high-tenor magmatic PGE–Au sulfide mineralization in closed systems: evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard Intrusion, East Greenland,” Econ. Geol. 109 (2), 387–406 (2014).

    Article  Google Scholar 

  22. D. A. Holwell and I. McDonald, “A review of the behaviour of platinum group elements within natural magmatic sulfide ore systems. The importance of semimetals in governing partitioning behavior,” Platinum Metals Rev. 54 (1), 26–36 (2010).

    Article  Google Scholar 

  23. D. A. Holwell, R. R. Keays, I. McDonald, and M. R. Williams, “Extreme enrichment of Se, Te, PGE and Au in Cu sulfde microdroplets: evidence from LA‑ICP‑MS analysis of sulfdes in the Skaergaard Intrusion, east Greenland,” Contrib. Mineral. Petrol. 170, 53 (2015). doi 10.1007/s00410-015-1203-y

    Article  Google Scholar 

  24. L. N. Kacharovskaya, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Ulan-Ude, 1986).

  25. E. V. Kislov, Yoko-Dovyren Layered Massif (Buryat. Nauchn. Ts., Ulan-Ude, 1998) [in Russian].

    Google Scholar 

  26. E. G. Konnikov, W. P. Meurer, S. S. Neruchev, E. M. Prasolov, E. V. Kislov, and D. A. Orsoev, “Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic–ultramafic layered complex, Eastern Siberia, Russia,” Mineral. Deposita 35, 526–532 (2000).

    Article  Google Scholar 

  27. H. P. Longerich S. E Jackson, and D. Gunther, “Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation,” J. Analyt. Atom. Spectrom. 11, 899–904 (1996).

    Article  Google Scholar 

  28. J. E. Mungall J. M Brenan, “Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements,” Geochim. Cosmochim. Acta 125, 265–289 (2014).

  29. D. A. Orsoev, N. S. Rudashevsky, Yu. L. Kretser, and E. G. Konnikov, “Precious metal mineralization in low-sulfide ores of the Ioko–Dovyren layered massif, Northern Baikal Region,” Dokl. Earath Sci. 390 (2), 545–549 (2003). (2003)

  30. C. Patten, S.-J. Barnes, E. A. Mathez, and F. E. Jenner, “Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets,” Chem. Geol. 358, 170–188 (2013).

    Article  Google Scholar 

  31. M. Queffurus and S-J. Barnes, “Processes affecting the sulfur to selenium ratio in magmatic nickel–copper and platinum-group element deposits,” Ore Geol. Rev. 69, 301–324 (2015).

    Article  Google Scholar 

  32. E. F. Sinyakova, V. I. Kosyakov, A. S. Borisenko, and N. S. Karmanov, “Behavior of trace noble metals during fractional crystallization of Cu–Fe–Ni–(Pt, Pd, Rh, Ir, Ru, Ag, Au, Te) sulfide melts,” Russ. Geol. Geophys. (in press).

  33. J. W. Smith, D. A. Holwell, I. McDonald, and A. J. Boyce, “The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex,” Ore Geol. Rev. 73, 148–174 (2016).

    Article  Google Scholar 

  34. E. M. Spiridonov, “Ore-magmatic systems of the Noril’sk ore field,” Russ. Geol. Geophys. 51 (9), 1059–1077 (2010).

    Article  Google Scholar 

  35. E. M. Spiridonov, A. A. Ariskin, E. V. Kislov, N. N. Korotaeva, G. S. Nikolaev, I. V. Pshenitsyn, and V. O. Yapaskurt, “Laurite and Ir-osmium from plagioclase lherzolite of the Yoko-Dovyren mafic-ultramafic pluton,” Northern Baikal region, Geol. Ore Deposits, 2018, vo. 60, no. 3, pp. 210–219.

    Article  Google Scholar 

  36. N. D. Tolstykh, D. A. Orsoev, A. P. Krivenko, and A. E. Izokh, Noble-Metal Mineralization in the Layered Ultramafic–Mafic Plutons of the Southern Siberian Platform (Parallel, Novosibirsk, 2008) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank O.A. Lukanin, as a reviewer of the manuscript, and E.M. Spiridonov for valuable comments on the content of this work. This study was financially supported by the Russian Science Foundation, Grant 16-17-10129. This is contribution 1176 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ariskin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariskin, A.A., Nikolaev, G.S., Danyushevsky, L.V. et al. Genetic Interpretation of the Distribution of PGE and Chalcogens in Sulfide-Mineralized Ultramafic Rocks from the Yoko-Dovyren Layered Intrusion. Geochem. Int. 56, 1322–1340 (2018). https://doi.org/10.1134/S0016702918130025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918130025

Keywords:

Navigation