Skip to main content
Log in

Fractionation of Carbonate Carbon (Ccarb) Accumulation between Continents and Oceans in the Late Mesozoic–Cenozoic

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Ccarb masses per time unit was determined for separate oceanic basins and for the entire World Ocean using lithological–facies mapping of the Neo– and Eopleistocene age sections of the Pleistocene pelagic zones in the World Ocean. These parameters are compared with those of continents, continental shelves and slopes, and oceans, which were recalculated using data by Ronov (1993) for the Upper Jurassic–Pliocene. At the Mesozoic–Cenozoic boundary, carbonate accumulation was shifted from continents to oceans. The accumulation of carbonate sediments on continents is determined by areas of epicontinental seas. Significant role in the history of oceanic carbonate sedimentation is played by the nutrient fluxes from continents into the World Ocean. Subduction and evolution of the carbonate compensation depth (CCD) play significant role in calculating the quantitative parameters of carbonate accumulation in ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W. H. Berger, “Calcite Compensation Depth (CCD),” Encyclopedia of Marine Geosciences (Springer, 2016), pp. 71–73.

    Chapter  Google Scholar 

  • W. H. Berger and E. L. Winterer, “Plate stratigraphy and the fluctuating carbonate line,” Pelagic Sediments: On Land and Under the Sea, Ed. by K. J. Hsü and H. C. Jenkyns (Blackwell, Oxford, 1974), pp. 11–98.

    Google Scholar 

  • R. A. Berner, “GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2,” Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  • N. M. Chumakov, Earth’s Glaciations. History, Stratigraphic Significance, and Role in the Biosphere (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  • C. P. Conrad and C. Lithgow–Bertelloni, “Faster seafloor spreading and lithosphere production during the mid–Cenozoic,” Geology 35 (1), 29–32 (2007).

    Article  Google Scholar 

  • J. W. Farrell I. Raffi, T. R. Janecek, D. W. Murray, M. A. Levitan, K. A. Dadley, K.–C. Emeis, M. Lyle, J.–A. Flores, and S. Hovan, “Late Neogene sedimentation patterns in the eastern equatorial Pacific,” Proc. ODP, Sci. Results 138, 717–756 (1995).

    Google Scholar 

  • Geological–Geophysical Atlas of the Atlantic Ocean, Ed. by G. B. Udintsev, (MOK (YUNESCO)–MINGEO USSR–AN USSR–GUGK USSR, Moscow, 1989–1990). [in Russian].

  • Geological–Geophysical Atlas of the Indian Ocean, Ed. by G. B. Udintsev (Akad. nauk SSSR, Moscow, 1975) [in Russian].

    Google Scholar 

  • F. M. Gradstein, J. G. Ogg, M. D. Schmitz, and G. M. Ogg, The Geologic Time Scale 2012 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • W. W. Hay, L. S. Sloan, and C. N. Wold, “Mass/Age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction,” J. Geophys. Res. 93 (B12), 14933–14940 (1988).

    Article  Google Scholar 

  • International Geological–Geophysical Atlas of the Pacific Ocean, Ed. by G. B. Udintsev, (MOK (YUNESCO), RAN, GUNIO MORF, Moscow–St. Petersburg, 2003) [in Russian].

    Google Scholar 

  • V. N. Ivanenkov, “General tendencies in distribution of biogenic elements in the World Ocean”, in Chemistry of Ocean Waters, Ed. by O. K. Bordovskii and V. N. Ivanenkov (Nauka, Moscow, 1979), pp. 188–228 [in Russian].

    Google Scholar 

  • J. M. Kennett, Marine Geology (Prentice–Hall, Englewood Cliffs, 1982).

    Google Scholar 

  • V. E. Khain, Tectonics of Continents and Oceans (Moscow, Nauchnyi Mir, 2001) [in Russian].

    Google Scholar 

  • K. S. D. Kochhann, A. Holbourn, W. Kuhnt, J. E. T. Channell, M. Lyle, J. K. Shackford, R. H. Wilkens, and N. Andersen, “Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene climatic optimum,” Paleoceanography 31, (2016) doi 10.1002/2016PA002988

  • V. G. Kuznetsov, Evolution of Carbonate Accumulation in the Earth’s History (GEOS, Moscow, 2003) [in Russian].

    Google Scholar 

  • V. G. Kuznetsov, “Evolutionary section of lithology: emergence, state, and relationships of rock formation with evolution of the organic world,” in A Review of Conceptual Problems of Lithology, Ed. by O. V. Yapaskurt (GEOS, Moscow, 2012), pp. 34–70 [in Russian].

    Google Scholar 

  • M. A. Levitan, “Diagenesis (and catagenesis) of carbonate deposits,” in Geological History of Ocean, Ed. by A. S. Monin and A. P. Lisitzin (Nauka, Moscow, 1980a) pp. 342–348 [in Russian].

    Google Scholar 

  • M. A. Levitan, “Hiatuses in the sedimentary cover of the Atlantic Ocean,” Byul. Mosk. O–va Ispyt. Prir., Otd. Geol. 55 (3), 111–116.(1980b).

    Google Scholar 

  • M. A. Levitan, “Quantitative parameters of Pleistocene pelagic sedimentation in the World Ocean: global trends and regional features,” Geochem. Int. 55 (5), 428–441 (2017).

    Article  Google Scholar 

  • M. A. Levitan, and Yu. A. Bogdanov, “History of carbonate accumulation,” in Geological History of Ocean, Ed. by A. S. Monin and A. P. Lisitzin (Nauka, Moscow, 1980), pp. 260–277 [in Russian].

    Google Scholar 

  • M. A. Levitan, Paleooceanology of the Indian Ocean in the Cretaceous–Pliocene (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  • M. A. Levitan and T. N. Gelvi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Atlantic Ocean,” Geochem. Int. 54 (12), 1049–1060 (2016).

    Article  Google Scholar 

  • M. A. Levitan, Kh. M. Saidova, and O. B. Dmitrenko, “Some features of planktonogenic carbonate accumulation in the Indian Ocean in Cenozoic,” Okeanologiya 27 (1), 82–88 (1987).

    Google Scholar 

  • M. A. Levitan, A. N. Balukhovsky, T. A. Antonova, and T. N. Gelvi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Pacific Ocean,” Geochem. Int. 51 (5), 345–352 (2013).

    Article  Google Scholar 

  • M. A. Levitan, T. A. Antonova, and T. N. Gelvi, “Facies structure and quantitative parameters of Pleistocene pelagic sedimentation in the Indian Ocean,” Geochem. Int. 52 (4), 316–324 (2014).

    Article  Google Scholar 

  • A. P. Lisitzin, Processes of Oceanic Sedimentation (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  • L. M. Mejía, A. Méndez–Vicente, L. Abrevaya, K. T. Lawrence, C. Ladlow, C. Bolton, I. Cacho, and H. Stoll, “A diatom record of CO2 decline since the late Miocene,” Earth Planet. Sci. Lett. 479, 18–33 (2017).

    Article  Google Scholar 

  • R. D. Müller, M. Sdrolias, K. Gaina, B. Steinberger, and Ch. Heine, “Long–term sea–level fluctuations driven by ocean basin dynamics,” Science 319, 1357–1362 (2008).

    Article  Google Scholar 

  • M. Pagani, M. Huber, Z. Liu, S. M. Bohaty, J. Hendriks, W. Sijp, S. Krishnan, and R. M. DeConto, “The role of carbon dioxide during the onset of Antarctic Glaciation,” Science 334, 1261–1264 (2011).

    Article  Google Scholar 

  • A. T. S. Ramsay, “The distribution of calcium carbonate in deep sea sediments,” Paleoceanography, Ed. by W. W. Hay, SEPM Spec. Publ. 20, 57–76 (1974).

    Google Scholar 

  • A. B. Ronov, Sedimentation History and Oscillatory Movements in the European Part of the USSR (Geofiz. Inst. Akad. Nauk SSSR, Moscow, 1949) [in Russian].

    Google Scholar 

  • A. B. Ronov, Sedimentary Cover of the Earth: Quantitative Tendencies of Structure, Composition, and Evolution (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  • A. B. Ronov, Stratisphere or Sedimentary Cover of the Earth (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  • A. B. Ronov, “Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition,” Am. J. Sci. 294, 777–801 (1994).

    Article  Google Scholar 

  • A. B. Ronov, V. E. Khain, and A. N. Balukhovsky, “Global quantitative sedimentation balance on continents and oceans for the last 150 Ma,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 3–11 (1986).

    Google Scholar 

  • A. Ronov, V. Khain, and A. Balukhovsky, Atlas of Lithological– Paleogeographical Maps of the World. Mesozoic and Cenozoic of Continents and Oceans (Mingeo, Leningrad, 1989).

    Google Scholar 

  • V. S. Savenko, and A. V. Savenko, Phosphorus Geochemistry in the Global Hydrological Cycle (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  • M. Steinberg, “Fluctuations of the accumulation rate of the sediments deposited in the South Atlantic Ocean during the last 120 m.y.,” Compt. Rend. de l’Acad. Des Sci. 308. Ser. II (10), 941–946 (1989).

    Google Scholar 

  • J. Thiede and W. U. Ehrmann, “Late Mesozoic and Cenozoic sediment flux to the central North Atlantic,” North Atlantic Paleoceanography, Ed. by C. P. Summerhayes and N. J. Shackleton, Geol. Soc. Amer. Spec. Publ. 21, 3–15 (1986).

    Google Scholar 

  • T. Tyrrell and R. E. Zeebe, “History of carbonate ion concentration over the last 100 million years,” Geochim. Cosmochim. Acta 68 (17), 3521–3530 (2004).

    Article  Google Scholar 

  • T. H. Van Andel, C. R. Heath, and T. C. Moore, “Cenozoic tectonics, sedimentation and paleoceanography of the central equatorial Pacific,” Geol. Soc. Amer. Mem. 143, 1–65 (1975).

    Article  Google Scholar 

  • J. Zachos, M. Pagani, L. Sloan, E. Thomas, and K. Billups, “Trends, rhythms, and aberrations in global climate 65 Ma to Present,” Science 292, 868–893 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levitan.

Additional information

Original Russian Text © M.A. Levitan, 2018, published in Geokhimiya, 2018, No. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitan, M.A. Fractionation of Carbonate Carbon (Ccarb) Accumulation between Continents and Oceans in the Late Mesozoic–Cenozoic. Geochem. Int. 56, 702–710 (2018). https://doi.org/10.1134/S0016702918070066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918070066

Keywords

Navigation