Skip to main content
Log in

Experimental Study of Unequilibrated Silica Transfer from Liquid Water to the Vapor Phase

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Experiments were carried out in hermetically sealed platinum capsules, with water saturated with silica with respect to quartz at 300°C in the lower parts of the electric furnaces, where the temperature slightly increases upward at 0.15°C/cm. Our earlier studies (Alekseyev and Medvedeva, 2017) have shown that these exactly experimental parameters are favorable for silica transfer from the liquid to vapor phase. The statistically processed experimental results show that the molal silica concentration in the liquid phase (m) exponentially decreases with time. This dependence and the fact that the newly produced opal occurs on the capsule walls above the meniscus are consistent with the distillation model. The scatter of the experimental m values turned out to be caused not by differences in the temperature gradient in different wells of the electric furnaces but by the natural roughness of the inner walls of the capsules, which differed from one capsule to another and could even change with time in any given capsule. In the capsules with roughness artificially made on their walls, m decreased much more rapidly, and not only in the bottom but also in the upper parts of the electric furnaces, where temperature decreased upward (–0.08°C/cm). This may suggest that the discovered phenomenon is spread in nature more widely than surmised previously, because this phenomenon does not strongly depend on the direction of the temperature gradient, and voids in natural rocks usually have rough walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces. 6th ed., (John Wiley & Sons, New York, 1997).

  • V. A. Alekseyev and L. S. Medvedeva, “Silica distribution in the system quartz–water–vapor depending on the temperature gradient,” Geochem. Int. 56 (2), 136–147 (2018).

    Article  Google Scholar 

  • V. A. Alekseyev, V. M. Balashov, and G. P. Zaraisky, “Kinetics and modeling of fluid–rock interactions,” Petrology 5, 37–44 (1997).

    Google Scholar 

  • V. A. Alekseyev, L. S. Medvedeva, L. N. Kochnova, and O. A. Tytyunnik, “Mechanisms of silica precipitation from hydrothermal solutions: The effects of solution evaporations and quartz seed crystals,” Geochem. Int. 48 (2) 178–182 (2010).

    Article  Google Scholar 

  • V. A. Alexeyev, L. S. Medvedeva, and N. P. Starshinova, “Paradoxical transformation of the equilibrium quartz–water system into an unequilibrated one,” Geochem. Int. 51(5), 382–404 (2013).

    Article  Google Scholar 

  • J. Bico, C. Tordeux, and D. Quéré, “Rough wetting,” Europhys. Lett. 55, 214–220 (2001).

    Article  Google Scholar 

  • J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A 206, 41–46 (2002).

    Article  Google Scholar 

  • C. Buffone and K. Sefiane, “IR measurements of interfacial temperature during phase change in a confined environment,” Experimental Thermal and Fluid Science 29, 65–74 (2004).

    Article  Google Scholar 

  • C. Buffone, K. Sefiane, and C. Minetti, “The effect of wall thickness and material on Marangoni driven convection in capillaries,” Colloids and Surfaces A 481, 384–392 (2015).

    Article  Google Scholar 

  • J. S. Cline, R. J. Bodnar, and J. D. Rimstidt, “Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: application to epithermal gold deposits,” J. Geophys. Res. 97, 9085–9103 (1992).

    Article  Google Scholar 

  • D. A. Crerar and G. M. Anderson, “Solubility and solvation reactions of quartz in dilute hydrothermal solutions,” Chem. Geol. 8, 107–122 (1971).

    Article  Google Scholar 

  • J. D. Dana, E. S. Dana, and C. Frondel, The System of Mineralogy. V. 3. Silica Minerals. (John Wiley and Sons, New York, 1962).

  • P. J. Darragh, A. J. Gaskin, B. C. Terrell, and J. V. Sanders, “Origin of precious opal,” Nature 209 (5018), 13–16 (1966).

    Article  Google Scholar 

  • D. J. DeMaster, “The diagenesis of biogenic silica: chemical transformations occurring in the water column, seabed, and crust,” in Treatise on Geochemistry V. 7, Ed. by. H. D. Holland and K. K. Turekian, (Elsevier, 2003), pp. 87–98.

    Chapter  Google Scholar 

  • P. M. Dove, “Kinetic and thermodynamic controls on silica reactivity in weathering environments,” Rev. Mineral. 31, 235–290 (1995).

    Google Scholar 

  • L. R. Drees, L. P. Wilding, N. E. Smeck, and A. L. Senkayi, “Silica in soils: Quartz and disordered silica polymorphs,” in Minerals in Soil Environments, Ed. by J. B. Dixon and S. B. Weed, (Soil Sci. Soc. Am., Madison, 1989), pp. 913–974.

    Google Scholar 

  • S. E. Drummond and H. Ohmoto, “Chemical evolution and mineral deposition in boiling hydrothermal systems,” Econ. Geol. 80, 126–147 (1985).

    Article  Google Scholar 

  • O. W. Flörke, H. Graetsch, B. Martin, K. Röller, and R. Wirth, “Nomenclature of micro– and non–crystalline silica minerals, based on structure and microstructure,” Neues Jahrbuch Miner. Abh. 163, 19–42 (1991).

    Google Scholar 

  • R. O. Fournier, and R. W. Potter, “An equation correlating the solubility of quartz in water from 25° to 900°C at pressures up to 10000 bars,” Geochim. Cosmochim. Acta 46, 1969–1973 (1982).

    Article  Google Scholar 

  • R. M. Gel’man, and I. Z. Starobina, Photometric Methods of Determination of Rock–Forming Elements in Ores, Rocks, and Minerals (Min. Geologii RSFSR, Leningrad, 1970) [in Russian].

    Google Scholar 

  • I. Gunnarsson and S. Arnórsson, “Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat,” Geochim. Cosmochim. Acta 64, 2295–2307 (2000).

    Article  Google Scholar 

  • K. M. Hay and M. I. Dragila, “Physics of fluid spreading on rough surfaces.,” Int. J. Numerical Analysis 5, 85–92 (2008).

    Google Scholar 

  • K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloids Interface Sci. 325, 472–477 (2008).

    Article  Google Scholar 

  • J. J. Hemley, J. W. Montoya, J. W. Marinenko, and R. W. Luce, “Equilibria in the system Al2O3–SiO2–H2O and some general implications for alteration/mineralization processes,” Econ. Geol. 75, 210–228 (1980).

    Article  Google Scholar 

  • N. R. Herdianita, P. R. L. Browne, K. A. Rodgers, and K. A. Campbell, “Mineralogical and textural changes accompanying ageing of silica sinter,” Mineral. Deposita 35, 48–62 (2000).

    Article  Google Scholar 

  • M. Hosaka and S. Taki, “Hydrothermal growth of quartz crystals at low fillings in NaCl and KCl solutions,” J. Cryst. Growth 78, 413–417 (1986).

    Article  Google Scholar 

  • K. Hoshino, T. Itami, R. Shiokawa, and M. Watanabe, “A possible role of boiling in ore deposition: A numerical approach,” Resource Geol. 56, 49–54 (2006).

    Article  Google Scholar 

  • M. Hovland, H. G. Rueslåtten, H. K. Johnsen, B. Kvamme, and T. Kuznetsova, “Salt formation associated with sub–surface boiling and supercritical water,” Marine Petrol. Geol. 23, 855–869 (2006).

    Article  Google Scholar 

  • R. K. Iler, “Formation of precious opal,” Nature 207 (4996). 472–473 (1965).

    Article  Google Scholar 

  • G. C. Kennedy, “A portion of the system silica–water,” Econ. Geol. 45, 629–653 (1950).

    Article  Google Scholar 

  • I. N. Kigai and B. R. Tagirov, “Evolution of acidity of hydrothermal fluids related to hydrolysis of chlorides,” Petrology 18, 252–262 (2010).

    Article  Google Scholar 

  • S. Kitahara, “The solubility of quartz in water at high temperatures and high pressures,” Rev. Phys. Chem. Jpn. 30, 109–114 (1960).

    Google Scholar 

  • D. London and G. B. Morgan VI,“The pegmatite puzzle,” Elements 8, 263–268 (2012).

    Article  Google Scholar 

  • E. Merino and Y. Wang, “Self–organization in rocks: occurrences, observations, modeling, testing––with emphasis on agate genesis,” in Non–Equilibrium Processes and Dissipative Structures in Geoscience V. 11, Ed. by H.–J. Krug and J. H. Kruhl, Yearbook “Self–Organization” (Duncker & Humblot, Berlin, 2001), pp. 13–45.

    Google Scholar 

  • P. Ortoleva, J. Chadam, E. Merino, and A. Sen, “Geochemical self–organization II; the reactive–infiltration instability,” Am. J. Sci. 287, 1008–1040 (1987).

    Article  Google Scholar 

  • S. S. Panchamgam, A. Chatterjee, J. L. Plawsky, and P. C. Wayner, Jr., “Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger,” Int. J. Heat Mass Transfer. 51, 5368–5379 (2008).

    Article  Google Scholar 

  • B. Pewkliang, A. Pring, and J. Brugger, “The formation of precious opal: clues from the opalization of bone,” Can. Mineral. 46, 139–149 (2008).

    Article  Google Scholar 

  • J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner Jr., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Engin. Commun. 196, 658–696 (2008).

    Article  Google Scholar 

  • A. V. Plyasunov, “Thermodynamics of Si(OH)4 in the vapor phase of water: Henry’s and vapor–liquid distribution constants, fugacity and cross virial coefficients,” Geochim. Cosmochim. Acta 77, 215–231 (2012).

    Article  Google Scholar 

  • R. A. Pollock, G. Yu. Gor, B. R. Walsh, J. Fry, I. T. Ghampson, Yu. B. Melnichenko, H. Kaiser, W. J. DeSisto, M. C. Wheeler, and B. G. Frederick, “Role of liquid vs vapor water in the hydrothermal degradation of SBA–15,” J. Phys. Chem. C 116, 22802–22814 (2012).

    Article  Google Scholar 

  • D. Quéré, “Rough ideas on wetting,” Physica A 313, 32–46 (2002).

    Article  Google Scholar 

  • J. D. Rimstidt and H. L. Barnes, “The kinetics of silica–water reactions,” Geochim. Cosmochim. Acta 44, 1683–1699 (1980).

    Article  Google Scholar 

  • Y. Shibue, “Empirical expressions of quartz solubility in H2O, H2O + CO2, and H2O + NaCl fluids,” Geochem. J. 30, 339–354 (1996).

    Article  Google Scholar 

  • C. H. Sondergeld and D. L. Turcotte, “A laboratory study of mineral deposition in a boiling environment,” Econ. Geol. 74, 109–115 (1979).

    Article  Google Scholar 

  • C. I. Steefel and A. C. Lasaga, “A coupled model for transport of multiple chemical species and kinetic precipitation/ dissolution reactions with application to reactive flow in single phase hydrothermal systems,” Am. J. Sci. 294 (5), 529–592 (1994).

    Article  Google Scholar 

  • M. P. Verma, “Chemical thermodynamics of silica: a critique on its geothermometer,” Geothermics 29, 323–346 (2000).

    Article  Google Scholar 

  • Y. Wang and E. Merino, “Self–organization origin of agates: Banding, fiber twisting, composition, and dynamic crystallization model,” Geochim. Cosmochim. Acta 54, 1627–1638 (1990).

    Article  Google Scholar 

  • M. Wangen and I. A. Munz, “Formation of quartz veins by local dissolution and transport of silica,” Chem. Geol. 209, 179–192 (2004).

    Article  Google Scholar 

  • G. P. Zaraiskii, “The conditions of the nonequilibrium silicification of rocks and quartz vein formation during acidic metasomatism,” Geol. Ore Deposits 41, (4), 262–275 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alekseyev.

Additional information

Original Russian Text © V.A. Alekseyev, L.S. Medvedeva, V.N. Balashov, A.A. Burmistrov, I.N. Gromyak, 2018, published in Geokhimiya, 2018, No. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseyev, V.A., Medvedeva, L.S., Balashov, V.N. et al. Experimental Study of Unequilibrated Silica Transfer from Liquid Water to the Vapor Phase. Geochem. Int. 56, 617–627 (2018). https://doi.org/10.1134/S0016702918070030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918070030

Keywords

Navigation