Skip to main content
Log in

Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H2O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF6]3–, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na7(H2O)8[Si5Al7O24] and Na8(AlF6)(H2O)4[Si7Al5O24]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl and SO 2-4 , because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. W. Burnham, Least-Squares Refinement of Crystallographic Lattice Parameters for IBM PC/XT/AT and Compatibles (Program Description) (Harward University, Cambridge, 1991).

    Google Scholar 

  • A. V. Chichagov, “Information–calculating system on crystal structure data of minerals (MINCRYST),” Materials Science Forum, Trans. Tech. Publications. Switzerland, (1994), vol. 166–169, pp. 187–192.

    Google Scholar 

  • J. A. Creighton, H. W. Dekman, and J. M. Newsam, “Computer simulation and interpretation of the infrared and Raman spectra of sodalite frameworks,” J. Phys. Chem. 98, 448–459 (1994).

    Article  Google Scholar 

  • R. A. Denisov, V. P. Denks, A. E. Dudelzak, V. S. Osminin, and T. V. Ruus, “Optically removed coloration and luminescence of sodalites,” Zh. Prikl. Spektrosokop. 27(1), 149–154 (1977).

    Google Scholar 

  • V. P. Denks, Extended Abstract of Doctoral Dissertation in Physics and Mathematics (Inst. Fiz. AN Estonii, Tartu, 1989).

    Google Scholar 

  • W. Depmeier, “The sodalite family—a simple but versatile framework structure,” in Micro- and Mesoporous Mineral Phases, Ed. by G. Ferraris and S. Merlino, Rev. Mineral. Geochem. 57, 203–240 (2005).

    Google Scholar 

  • B. Feron, J. L. Guth, and N. Mimouni-Erddalane, “Influence of the presence of NaF on the crystallization of zeolite A (LTA): first evidence for the existence of fluosodalite, the missing end-member of the halosodalite series,” Zeolites, 14, 177–181 (1994).

    Article  Google Scholar 

  • V. I. Gerasimovsky, V. P. Volkov, L. N. Kogarko, et al., Geochemistry of the Lovozero Alkaline Massif (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  • E. N. Gramenitskii, T. I. Shchekina, and V. N. Devyatova, Phase Relations in Fluorine-Bearing and Nepheline Systems and Element Partitioning between Phases (GEOS, Moscow, 2005) [in Russian].

    Google Scholar 

  • A. R. Kotel’nikov and L. V. Zhornyak, “Stability of NaClsodalite under hydrothermal conditions,” Geokhimiya, No. 12, 1809–1812 (1994).

    Google Scholar 

  • A. R. Kotel’nikov, Z. A. Kotel’nikova, I. M. Romanenko, N. I. Suk, and A. A. Gurbanov, “Stability of sulfatesodalite (nosean) under hydrothermal conditions,” Geochem. Int. 42 (9), 862–869 (2004).

    Google Scholar 

  • A. R. Kotel’nikov, N. I. Suk. Z. A. Kotel’nikova, G. M. Akhmedzhanova, and A. M. Koval’skii, “Stability of ussingite under hydrothermal condtions,” Proceedings of International (CIS Countries) Conference on Alkaline Magmatism and Its Ore Potential, Kiev, Ukraine, 2007 (Logos, Kiev, 2007), pp. 122–124.

    Google Scholar 

  • A. Kotelnikov, A. Kovalskii, E. Gramenitskiy, and T. Shchekina, “The synthesis of F-sodalite in the system SiO2–Al2O3–Na2O–H2O–NaF at 400–800°C and \({P_{{H_2}O}}\)= 1–2 kbar,” Conference Series of 12th International Conference on Experimental Mineralogy, Petrology and Geochemistry, Innsbruck, Austria (Innsbruck, 2008), p. 43.

    Google Scholar 

  • A. R. Kotel’nikov, V. I. Tikhomirova, Z. A. Kotel’nikova, N. I. Suk, and A. M. Koval’skii, “An experimental study of Cl and S distribution between sodalite and fluid,” Geochem. Int. 47 (6), 568–577 (2009).

    Article  Google Scholar 

  • A. R. Kotel’nikov, T. I. Shchekina, E. N. Gramenitskii, E.S. Zubkov, A. M. Koval’skii, N. I. Suk, and Z. A. Kotelnikova, “Synthesis of fluorine-bearing sodalite and study of its properties,” Vestn. Otd. Nauk Zemle. RAN 3, NZ6049 (2011). NZ 000179 doi 10.2205/2011

    Google Scholar 

  • Z. A. Kotel’nikova and A. R. Kotel’nikov, “Synthetic NaFbearing fluid inclusions,” Geochem. Int. 40 (6), 594–600 (2002).

    Google Scholar 

  • Z. A. Kotel’nikova and A. R. Kotel’nikov, “NaF-bearing fluids: experimental investigation at 500–800°C and P = 2000 bar using synthetic fluid inclusions in quartz,” Geochem. Int. 46 (1), 48–61 (2008).

    Article  Google Scholar 

  • Z. A. Kotel’nikova and A. R. Kotel’nikov, “The phase state of NaF-containing fluid at 700°C and 1, 2, and 3 kbar (from the results of study of synthetic fluid inclusions in quartz),” Russ. Geol. Geophys. 52 (11), 1310–1318 (2011).

    Article  Google Scholar 

  • Th. V. Krumerei, E. Pernicka, M. Kalivoda, and G. Markl, “Volatiles in a peralkaline system: Abiogenic hydrocarbons and F–Cl–Br systematics in the naujaite of the Ilimaussaq intrusion, South Greenland,” Lithos 95, 298–314 (2007).

    Article  Google Scholar 

  • G. Markl, M. Markl, G. Schwinn, and H. Sommer, “Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq complex, South Greenland,” J. Petrol. 42 (1), 2231–2257 (2001).

    Article  Google Scholar 

  • K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, 2009).

    Google Scholar 

  • L. V. Olysych, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (MGU, Moscow, 2012).

    Google Scholar 

  • H. Pentinghaus, W. Bernotat, and J. Goettlicher, “Neue Glieder der Sodalith-Strukturfamilie: Se4Al8Si4O24(MoO4)2,” in Ergenisbericht uber Forschungs und Entwicklungsarbeiten (KfK, Karlsruhe, 1990), pp. 12–13.

    Google Scholar 

  • L. L. Perchuk and I. D. Ryabchikov, Phase Correspondence in Mineral Systems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  • Z. D. Sharp, G. R. Helffrich, S. R. Bohlen, and E. J. Essene, “The stability of sodalite in the system NaA1SiO4–NaCl,” Geochim. Cosmochim. Acta 53, 1943–1954 (1989).

    Article  Google Scholar 

  • T. I. Shchekina, E. N. Gramenitskiy, and Ya. O. Alferyeva, “Leucocratic magmatic melts with the maximum fluorine concentrations: experiment and relations in nature,” Petrology 21 (5), 454–470 (2013).

    Article  Google Scholar 

  • F. G. Smith, Physical Geochemistry (Addison-Wesley, 1963).

    Google Scholar 

  • O. V. Yakubovich, A. R. Kotel’nikov, T. I. Shchekina, E. N. Gramenitskiy, and E. S. Zubkov, “New representative in the sodalite structure type with extraframework anions [AlF6]3–,” Crystall. Rept. 56 (2), 190–197 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Gramenitskii.

Additional information

Original Russian Text © E.N. Gramenitskii, A.R. Kotel’nikov, T.I. Shchekina, O.V. Yakubovich, V.N. Devyatova, E.S. Zubkov, N.I. Suk, M.F. Vigasina, Z.A. Kotel’nikova, 2018, published in Geokhimiya, 2018, No. 6, pp. 527–540.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gramenitskii, E.N., Kotel’nikov, A.R., Shchekina, T.I. et al. Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence. Geochem. Int. 56, 521–534 (2018). https://doi.org/10.1134/S0016702918060058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918060058

Keywords

Navigation