Geochemistry International

, Volume 56, Issue 4, pp 304–317 | Cite as

Facies Structure and Quantitative Parameters of Pleistocene Sediments of the Bering Sea

  • M. A. Levitan
  • T. N. Gelvi
  • K. V. Syromyatnikov
  • K. D. Chekan


Lithofacies zoning is described for the first time for the Neo- and Eopleistocene of the Bering Sea. Four lithofacies sedimentation zones are distinguished: (I) terrigenous; (II) siliceous–terrigenous; (III) siliceous, and (IV) volcanoterrigenous ones. Corresponding maps were treated using Ronov volumetric method to quantify sedimentation parameters for distinguished lithofacies zones (subzones) and types of Pleistocene sediments. It was revealed that terrigenous sediments predominate over other sediments. Accumulation of the terrigenous sediments was more intense (by 1.4 times) in the Neopleistocene than in the Eopleistocene. The sedimentation rate of siliceous sediments of the Bowers Ridge in the Eopleistocene was two times higher than in the Neopleistocene.


bottom sediments Bering Sea Eopleistocene Neopleistocene areas dry sediment mass volume sediment accumulation rate terrigenous sediments siliceous ooze 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. W. Aiello and A. C. Ravelo, “Evolution of marine sedimentation in the Bering Sea since the Pliocene,” Geosphere (2012). doi 10.1130/GES00710.1Google Scholar
  2. M. N. Alekseev, B. A. Borisov, A. A. Velichko, Yu. B. Gladenkov, Yu. A. Lavrushin, and S. M. Shik, “Comments on the general stratigraphic scale of the Quaternary system in Russia,” Stratigraphy. Geol. Correlation 5 (5), 515–518 (1997).Google Scholar
  3. A. S. Bulochnikova, Extended Abstract of Candidate’s Dissertation in Geography (Mosk. Gos. Univ., Moscow, 2013)Google Scholar
  4. M. S. Cook, L. D. Keigwin, D. Birgel, and K.-U. Hinrichs, “Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea,” Paleoceanography 26, PA2210 (2011).CrossRefGoogle Scholar
  5. J. S. Creager, D. W. Scholl, et al., Initial reports of the Deep Sea Drilling Project 19, (1973).CrossRefGoogle Scholar
  6. K. Dadd and K. Foley, “A shape and compositional analysis of ice-rafted debris in cores from IODP Expedition 323 in the Bering Sea,” Deep-Sea Res. II 125–126, 191–201 (2016).CrossRefGoogle Scholar
  7. “Expedition 323 Scientists Bering Sea paleoceanography: Pliocene–Pleistocene paleoceanography and climate history of the Bering Sea,” Integrated Ocean Drilling Program Preliminary Report 323 (2010). doi 10.2204/ Scholar
  8. T. J. Fullam, P. R. Supko, R. E. Boyce, and R. W. Stewart, “Some aspects of late Cenozoic sedimentation in the Bering Sea and north Pacific Ocean,” Initial reports of the Deep Sea Drilling Project 19, 887–896 (1973).Google Scholar
  9. R. Gersonde, “The expedition of the research vessel “Sonne” to the subpolar north Pacific and the Bering Sea in 2009 (SO202-INOPEX),” Ber. Polarforsch. 643, (2012).Google Scholar
  10. S. A. Gorbarenko, “Stable isotope and lithologic evidence of late glacial and Holocene oceanography of the northwestern Pacific and its marginal seas,” Quaternary Res. 46, 230–250 (1996).CrossRefGoogle Scholar
  11. S. A. Gorbarenko, I. A. Basov, M. P. Chekhovskaya, J. Southon, T. A. Khusid, and A.V. Artemova, “Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: Geochemical and paleontological evidence,” Deep- Sea Res. Pt. II 52, 2174–2185 (2005).CrossRefGoogle Scholar
  12. S. A. Gorbarenko, P. Wang, R. Wang, and X. Cheng, “Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr,” Palaeogeogr. Palaeoecol. Palaeoclim. 286, 97–106 (2010).CrossRefGoogle Scholar
  13. F. M. Gradstein, J. G. Ogg, and A. G. Smith, A Geologic Time Scale 2004 (Cambridge Univ. Press, 2004).CrossRefGoogle Scholar
  14. T. D. Hamilton, “Late Cenozoic glaciation of Alaska,” The geology of Alaska, Ed. by G. Plafker and H. C. Berg (GSA, 1994), pp. 813–844Google Scholar
  15. D. W. Hood, “The Bering Sea,” Estuaries and Enclosed Seas, Ed. by B. H. Ketchum (Elsevier, Amsterdam, 1983), pp. 337–373.Google Scholar
  16. D. M. Hopkins, “Aspect of the paleogeography of Beringia during the late Pleistocene,” Paleoecology of Beringia, Ed. by D. M. Hopkins, J. V. Matthews, C. E. Schweger, and S. B. Young, (Academic Press, New York, 1982), pp. 3–28.CrossRefGoogle Scholar
  17. A. Hu, G. A. Meehl, B. L. Otto-Bliesner, C. Waelbroeck, W. Han, M.-F. Loutre, K. Lambeck, J. X. Mitrovica, and N. Rosenbloom, “Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes,” Nat. Geosci. 3, 118–121 (2010).CrossRefGoogle Scholar
  18. S. Iwasaki, K. Takahashi, Y. Kanematsu, H. Asahi, J. Onodera, and A. C. Ravelo, “Paleoproductivity and paleoceanography of the last 4.3 Myrs at IODP Expedition 323 Site U1341 in the Bering Sea based on biogenic opal content,” Deep-Sea Research II 125–126, 145–154 (2016).CrossRefGoogle Scholar
  19. H. A. Karl, P. R. Carlson, and J. V. Gardner, “Aleutian Basin in the Bering Sea: styles of sedimentation and canyon development,” Geology of the United States’ Sea Floor. The View from GLORIA, Ed. by J. V. Gardner, M. E. Field, and D. C. Twichell (Univer. Press, Cambridge, 1996), pp. 305–332.Google Scholar
  20. K. Katsuki and K. Takahashi, “Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the last Quaternary,” Deep-Sea Research II 52, 2110–2131 (2005).CrossRefGoogle Scholar
  21. V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  22. S. Kim, B. K. Khim, M. Uchida, T. Itaki, and R. Tada, “Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs,” Glob. Planet. Change 79, 89–98 (2011).CrossRefGoogle Scholar
  23. S. Kim, K. Takahashi, B. K. Khim, Y. Kanamatsu, H. Asahi, and A. C. Ravelo, “Biogenic opal production changes during the Mid-Pleistocene Transition in the Bering Sea (IODP Expedition 323 Site U1343),” Quat. Res. 81, 151–157 (2014).CrossRefGoogle Scholar
  24. S. Kim, B.-K. Khim, and H. G. Cho, “Clay mineral stratigraphy during the last 2.4 Ma at IODP Exp. 323 Site U1343 in the Bering Sea,” Marine Geol. 359, 163–168 (2015).CrossRefGoogle Scholar
  25. S. Kim, B.-K. Khim, and K. Takahashi “Late Pliocene to early Pleistocene (2.4–1.25 Ma) paleoproductivity changes in the Bering Sea: IODP expedition 323 Hole U1343E,” Deep-Sea Research II 125–126, 155–162 (2016).CrossRefGoogle Scholar
  26. K. P. Knudson and A. C. Ravelo, “Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr,” Geophys. Res. Lett. 42, (2015). doi 10.1002/2015GL066317Google Scholar
  27. M. A. Levitan, “Terrigenous fluxes in north Atlantic in the Cretaceous–Neogene and factors of evolution of terrigenous process,” Okeanologiya 34 (3), 433–438 (1994).Google Scholar
  28. M. A. Levitan, “Comparative analysis of pelagic Pleistocene silica accumulation in the Pacific and Indian oceans,” Geochem. Int. 54 (3), 257–265 (2016).CrossRefGoogle Scholar
  29. M. A. Levitan, “Quantitative parameters of Pleistocene pelagic sedimentation in the World Ocean: global trends and regional features,” Geochem. Int. 55 (5), 428–441 (2017).CrossRefGoogle Scholar
  30. M. A. Levitan and T. N. Gelvi, “Quantitative parameters of Pleistocene pelagic sedimentation in the Atlantic Ocean,” Geochem. Int. 54 (12), 1049–1060 (2016).CrossRefGoogle Scholar
  31. M. A. Levitan, Yu. A. Lavrushin, and R. Stein, Essays on Sedimentation History in the Arctic Oceans and Subarctic Seas during Last 130 ka (GEOS, Moscow, 2007) [in Russian].Google Scholar
  32. M. A. Levitan, A. N. Balukhovskii, T. A. Antonova, and T. N. Gelvi, “Quantitative Parameters of Pleistocene Pelagic Sedimentation in the Pacific Ocean,” Geochem. Int. 51 (5), 345–352 (2013a).CrossRefGoogle Scholar
  33. M. A. Levitan, T. G. Kuzmina, V. L. Luksha, I. A. Roshchina, K. V. Syromyatnikov, L. Max, D. Nuernberg, J.-R. Riethdorf, and R. Tiedemann, “Late Pleistocene sedimentation history of the Shirshov Ridge, Bering Sea,” Geochem. Int. 51 (3), 173–204 (2013b).CrossRefGoogle Scholar
  34. M. A. Levitan, T. A. Antonova, and T. N. Gelvi, “Facies structure and quantitative parameters of Pleistocene pelagic sedimentation in the Indian Ocean,” Geochem. Int. 52 (4), 350–360 (2014).CrossRefGoogle Scholar
  35. L. E. Lisiecki and M. E. Raymo, “A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records,” Paleoceanography 20 (PA1), PA1003 (2005). doi 10.1029/2004PA001071Google Scholar
  36. A. P. Lisitzin, Sedimentation in the Barents Sea (Nauka, Moscow, 1966) [in Russian].Google Scholar
  37. A. V. Lozhkin and P. M. Anderson, “About the age and habitat of the Kirgilyakh mammoth (Dima), Western Beringia,” Quat. Sci. Rev. 145, 104–116 (2016).CrossRefGoogle Scholar
  38. M. S. Marlow, A. K. Cooper, and M. A. Fisher, “Geology of the eastern Bering Sea continental shelf,” The geology of Alaska, Ed. by G. Plafker and H. C. Berg. (GSA, 1994), pp. 271–284.Google Scholar
  39. M. Okada, M. Takagi, and K. Takahashi, “Chronostratigraphy of sediment cores from the Bering Sea and the Subarctic Pacific based on paleomagnetic and oxygen isotopic analyses,” Deep-Sea Research II 52, 2092–2109 (2005).CrossRefGoogle Scholar
  40. J.-R. Riethdorf, D. Nürnberg, L. Max, R. Tiedemann, S. A. Gorbarenko, and M. I. Malakhov, “Millennialscale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr,” Clim. Past 9, 1345–1373 (2013).CrossRefGoogle Scholar
  41. J.-R. Riethdorf, B. Thibodeau, M. Ikehara, D. Nürnberg, L. Max, R. Tiedemann, and Y. Yokoyama, “Surface nitrate utilization in the Bering Sea since 180 kA BP: Insight from sedimentary nitrogen isotopes,” Deep-Sea Research II 125–126, 163–176 (2016).CrossRefGoogle Scholar
  42. C. Sancetta, L. Heysser, L. Labeyrie, A. S. Naidu, and S. W. Robinson, “Wisconsin–Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals,” Marine Geol. 62, 55–68 (1985).CrossRefGoogle Scholar
  43. D. W. Scholl and J. S. Creager, “Geologic synthesis of Leg 19 (DSDP) results: far north Pacific, and Aleutian ridge, and Bering Sea,” in Initial Reports of the Deep Sea Drilling Project, Ed. by J. S. Creager, D. W. Scholl et al., 19, 897–913 (1973).Google Scholar
  44. G. D. Sharma, The Alaskan Shelf. Hydrographic, Sedimentary and Geochemical Environment (Springer–Verlag, New York–Heidelberg–Berlin, 1979).Google Scholar
  45. SO201-KALMAR Leg 2 Cruise Report, Ed. by C. Dullo, B. Baranov, and C. van den Bogaard, (IFM-GEOMAR, Kiel, 2009).Google Scholar
  46. A. M. Springer, C. P. McRoy, and M. V. Flint, “The Bering Sea Green Belt: shelf edge processes and ecosystem production,” Fish. Oceanogr. 5 (3/4), 205–223 (1996).CrossRefGoogle Scholar
  47. Z. Stroynowski, A. C. Ravelo, and D. Andreasen, “A Pliocene to recent history of the Bering Sea at Site U1340A, IODP Expedition 323,” Paleoceanography 30, 1641–1656 (2015).CrossRefGoogle Scholar
  48. A. N. Sukhov, V. D. Chekhovich, A. V. Lander, S. L. Presnyakov, and E. N. Lepekhina, “Age of the Shirshov Submarine Ridge basement (Bering Sea) based on the results of investigation of zircons using the U–Pb SHRIMP method,” Dokl. Earth Sci. 439, 926–932 (2011).CrossRefGoogle Scholar
  49. K. Tahakashi, “The Bering Sea and paleoceanography,” Deep-Sea Research II 52, 2080–2091 (2005).CrossRefGoogle Scholar
  50. K. Takahashi, A. C. Ravelo, and Y. Okazaki, “Introduction to Pliocene–Pleistocene paleoceanography of the Bering Sea,” Deep-Sea Research II 125–126, 1–7 (2011).Google Scholar
  51. S. Tanaka and K. Takahashi, “Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages,” Deep-Sea Research II 52, 2131–2149 (2005).CrossRefGoogle Scholar
  52. M. Tomczak, and J. S. Godfrey, Regional Oceanography. An Introduction (Elsevier, Oxford, 1994).Google Scholar
  53. V. G. Trifonov, Neotectonics of Eurasia (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Levitan
    • 1
  • T. N. Gelvi
    • 1
  • K. V. Syromyatnikov
    • 1
  • K. D. Chekan
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI)Russian Academy of SciencesMoscowRussia

Personalised recommendations