Skip to main content

Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts

Abstract

Human activities pathogenically modify biogeochemical cycles via introducing vast amounts of chemical elements and compounds into biotic cycles and inducing evolutionary transformations of the organic world of the biosphere. The adverse phenomena develop cascadewise, as is illustrated by the increase in the content of carbon dioxide and acid-forming compounds, enrichment of aquatic environments by metals, and pollution with persistent organic pollutants and biogenic elements. Analogies with the past are utilized to estimate the possible implications of the evolution of anthropogenically induced processes. The organic world is proved to react to anthropogenic impacts by means of active microevolutionary processes. The key reaction mechanisms of organisms and transformations of populations and ecosystems under the modified conditions are demonstrated. A review of literature data is used to show how anthropogenic emissions of CO2, NOx, P, toxic compounds and elements increases on a global scale, and how ocean acidification, eutrophication, water withdrawal, etc. are simultaneously enhanced. The methodology of estimating anthropogenic loads is discussed as a scientifically grounded strategy of minimizing anthropogenic impacts on natural ecosystems.

This is a preview of subscription content, access via your institution.

References

  1. T. M. Ansari, I. L. Marr, and N. Tariq, “Heavy metals in marine pollution perspective: a mini review,” J. Appl. Sci. 4, 1–20 (2004).

    Article  Google Scholar 

  2. S. Barker and A. Ridgwell, “Ocean acidification,” Nat. Educ. Knowl. 3 (10), 21–28 (2012).

    Google Scholar 

  3. M. Begon, H. Harper, and C. Townsend, Ecology: Individuals, Populations, and Communities (Blaclwell Science, 1986).

    Google Scholar 

  4. M. Beman, C. E. Chow, A. L. King, Y. Feng, J. A. Fuhrman, A. Andersson, N. R. Bates, B. N. Popp, et al., “Global declines in oceanic nitrification rates as a consequence of ocean acidification,” Environ. Sci. 108 (1), 208–213 (2011).

    Google Scholar 

  5. J. Bijma, M. Barange, L. Brander, et al. “Impacts of ocean acidification,” Science 320, 336–340 (2008).

    Article  Google Scholar 

  6. V. N. Bol’shakov and T. I. Moiseenko, “Anthropogenic evolution of animals: facts and their interpretation,” Ekologiya 5, 323–332 (2009).

    Google Scholar 

  7. G. W. Bryan, “Heavy metal contamination in the sea,” Marine Pollution, Ed. by R. Johnston (Academic Press, New York–San Francisco, 1976), pp. 185–302.

    Google Scholar 

  8. M. P. Cajaraville, L. Houser, G. Carvalho, et al. “Genetic damage and the molecular/cellular response to pollution,” in Effects of Pollution on Fish. Molecular Effect and Population Responses, Ed. by A. J. Lawrence and K. L. Hemingway (Blackwell Science Ltd, New York, 2003), pp. 14–82.

    Chapter  Google Scholar 

  9. J. W. Castle and J. H. Rodgers, “Hypothesis for the role of toxin-producing algae in Phanerozoic mass extinctions based on evidence from the geologic record and modern environments,” Environ. Geosci. 16, 1–239 (2009).

    Article  Google Scholar 

  10. R. K. Chesser and D. W Sugg, “Toxicant as selective agents in population and community dynamics,” Ecotoxicology: a Hierarchical Treatment, Ed. by M. C. Newman, and Ch. H. Jagoe (Levis, New York, 1996), pp. 293–317.

    Google Scholar 

  11. M. O. Clarkson, S. A. Kasemann, R. A. Wood, T. M. Lenton, S. J. Daines, S. Richoz, F. Ohnemueller, et al., “Ocean acidification and the Permo-Triassic mass extinction,” Science 348 (6231), 229–232 (2015).

    Article  Google Scholar 

  12. Climate Change 2013: Synthesis Report. (2014) IPCC Fifth Assessment Report (ar5). https://www.ipcc-wg1.unibe. ch/ar5/ar5.html

  13. L. L. Demina, “Quantification of the role of organisms in the geochemical migration of trace metals in the ocean,” Geochem. Int. 53 (3), 224–240 (2015).

    Article  Google Scholar 

  14. M. N. Depledge, “Genetic ecotoxicology: an overview,” J. Exp. Mar. Biol. Ecol. 200 (1–2), 57–66 (1996).

    Article  Google Scholar 

  15. T. Dobzhansky, Genetics and Evolutionary Process (Columbia University, New York, 1970).

    Google Scholar 

  16. Dynamics of Population Gene Pools at Anthropogenic Impacts, Ed. by Yu. P, Altukhova (Nauka, Moscow, 2004) [in Russian].

  17. EPA. (United States Environmental Protection Agency) Persistent Bioaccumulative Toxic. Persistence, Bioaccumulation and Toxicity (Parametrix Inc., Washington, 2017). https://www.epa.gov/toxics-release-inventory-tri-program/persistent-bioaccumulative-toxic-pbt-chemicalsrules-under-tri.

  18. T. A. Erwin, “An evolutionary basis for conservation strategies,” Science 253, 750–752 (1991).

    Article  Google Scholar 

  19. C. D. Evans, T. Don, D. T. Monteith, D. Fowler, J. N. Cape, and S. Brayshaw, “Hydrochloric acid: an overlooked driver of environmental change,” Environ. Sci. Technol. 45 (5), 1887–1895 (2011).

    Article  Google Scholar 

  20. A. P. Fersman, Geochemistry (ONTI-KhIMTEORET, Leningrad, 1934), Vol. 2 [in Russian].

  21. W. F. Fitzgerald, C. H. Lamborg, R. Chad et al., Marine biogeochemical cycling of mercury, Chem. Rev. 107, 641–662 (2007).

    Google Scholar 

  22. E. M. Galimov, “Role of low solar emittance in the biosphere history,” Geochem. Int. (in press).

  23. E. M. Galimov, Phenomenon of Life: Between Equilibrium and Non-linearity. Origin and Principles of Evolution, 3rd. Ed. (LIBROKOM, Moscow, 2009) [in Russian].

    Google Scholar 

  24. J. N. Galloway, “Acid deposition: perspectives in time and space,” Water, Air, Soil Pollut. 85, 15–24 (1995).

    Article  Google Scholar 

  25. J. N. Galloway and E. B. Cowling, “Reactive nitrogen and the world: two hundred years of change,” AMBIO 31, 64–71 (2002).

    Article  Google Scholar 

  26. Ø. A. Garmo, B. L. Skjelkvåle, H. D. de Wit, L. Colombo, C. Curtis, J. Fölster, A. Hoffmann, J. Hruška, et al. “Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008,” Water, Air, Soil Pollut. 225, 1–14 (2014).

    Article  Google Scholar 

  27. E. Gautheier, I. Fortier, F. Courchesne et al., “Aluminium form in drinking water and risk of Alzheimer’s disease,” Environ. Res. 84, 234–246 (2000).

    Article  Google Scholar 

  28. A. M. Gilyarov, “Development of the evolutionary approach as explanation of beginning in the ecology,” Zh. Obshch. Biol. 64 (1), 3–22 (2003).

    Google Scholar 

  29. N. Gruber and J. N. Galloway, “An Earth-system perspective of the global nitrogen cycle,” Nature 451, 293–296 (2008).

    Article  Google Scholar 

  30. J. M. Guinotte and V. J. Fabry, “Ocean acidification and its potential effects on marine ecosystems,” An. N-Y. Academy Sci. 1134, 320–342 (2008).

    Article  Google Scholar 

  31. D. M. Iglesias-Rodriguez, P. R. Halloran, and E. M. Rosalind, “Phytoplankton calcification in a high-CO2 World,” World Sci. 320, 336–340 (2008).

    Google Scholar 

  32. B. C. Kelly M. G. Ikonomou, J. D. Blair, A. E. Morin, and F. A. Gobas, “Food web–specific biomagnification of persistent organic pollutants,” Science 317 (5835), 236–239 (2007).

    Article  Google Scholar 

  33. E. I. Kolchinskii, Evolution of the Biosphere (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  34. V. V. Koval’skii, Birth and Evolution of the Biosphere, Usp. Sovremen. Biol. 55 (1), 45–67 (1963).

    Google Scholar 

  35. J. C. I. Kuylenstierna, M. Rodhe, S. Cinderby, and K. Hicks, “Acidification in developing countries: ecosystem sensitivity and the critical load approach on a global scale,” AMBIO 30, 20–28 (2001).

    Article  Google Scholar 

  36. F. T. Machenzie, L. M. Ver, and A. Lerman, “Centuryscale nitrogen and phosphorus controls of the carbon cycle,” Chem. Geol. 190, 13–32 (2002).

    Article  Google Scholar 

  37. T. I. Moiseenko, “Effect of acidification on aqueous ecosystems,” Ekologiya 2, 110–119 (2005).

    Google Scholar 

  38. T. I. Moiseenko, “The theory of critical loads and assessment of the effect of acid-forming substances on surface waters,” Dokl. Earth Sci. 378, 468–471 (2001).

    Google Scholar 

  39. Moiseenko, T. I. Aqueous Ecotoxicology: Fundamental and Applied Aspects (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  40. T. I. Moiseenko, “Stability of aqueous ecosystems and their variability under toxic pollution conditions,” Ekologiya 6, 441–448 (2011).

    Google Scholar 

  41. T. I. Moiseenko, “Impact of geochemical factors of aquatic environment on the metal bioaccumulation in fish,” Geochem. Int. 53 (3), 213–223 (2015).

    Article  Google Scholar 

  42. T. I. Moiseenko and I. I. Rudneva, “Global pollution and nitrogen functions in the hydrosphere,” Dokl. Earth Sci. 420, 676–680 (2008).

    Article  Google Scholar 

  43. T. I. Moiseenko, L. P. Kudryavtseva, and N. A. Gashkina, Scattered Elements in the Terrestrial Surface Waters: Technophile Properties, Bioaccumulation, and Ecotoxicology (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  44. T. I. Moiseenko, A. N. Sharov, O. I. Vandish, L. P. Kudryavtseva, N. A. Gashkina, and C. Rose, “Long-term modification of arctic lake ecosystem: reference condition, degradation and recovery,” Limnologica 39 (1), 1–13 (2009).

    Article  Google Scholar 

  45. T. I. Moiseenko, M. I. Dinu, and M. M. Bazova, “Longterm changes in the water chemistry of subarctic lakes as a response to reduction of air pollution: case study in the Kola North, Russia,” Water, Air, Soil Pollut. 226 (98), 1–12 (2015).

    Google Scholar 

  46. T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, “Enrichment of surface water by elements: effects of air pollution, acidification and eutrophication,” Environ. Process. 3, 39–58 (2016).

    Article  Google Scholar 

  47. T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, Water Acidification: Vulnerability and Critical Loading (URRS, Moscow, 2016) [in Russian].

    Google Scholar 

  48. D. T. Monteith, J. L. Stoddard, C. D. Evans, M. Forsius, T. Hogasen, A. Wilander, B. L. Skelkvale et al., “Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry,” Nature 450, 537–546 (2007).

    Article  Google Scholar 

  49. J. W. Moore, and S. Ramamoorthy, Heavy Metals in Natural Waters. Applied Monitoring and Impact Assessment (Springer-Verlag, New York, 1984).

    Book  Google Scholar 

  50. NASSA Report Vital Signs of the Planet: Global Climate Change and Global Warming (2014). https://climate. nasa.gov/news/2365/seven-case-studies-in-carbon-andclimate.

  51. E. P. Odum, Fundamentals of Ecology (Springer, 1961).

    Google Scholar 

  52. E. R. Pianka, Evolutionary Ecology (Harper and Row, New York, 1974).

    Google Scholar 

  53. A. I. Pogue and W. J. Lukiw, “The mobilization of aluminum into the biosphere,” Front. Neurol. 5, 262–271 (2014).

    Article  Google Scholar 

  54. I. Prigogine, and I. Stengers, Order out of Chaos. Man’s New Dialogue with Nature (Heinemann, London, 1984).

    Google Scholar 

  55. Problems of the Origin and Evolution of the Biosphere, Galimov, E. M. Ed., (Librikom, Moscow,) [in Russian]

  56. J. Rockström, W. Steffen, K. Noone, Å. Persson, F. S. Chapin III, E. F. Lambin, T. M. Lenton, M. Scheffer et al., “A safe operating space for humanity,” Nature 461, 472–475 (2009).

    Article  Google Scholar 

  57. I. Semiletov and O. Gustafsson, “Massive remobilization of permafrost carbon during post-glacial warming,” Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  58. I. Semiletov, I. Pipko, O. Gustafsson, L. G. Anderson, V. Sergienko, S. Pugach, O. Dudarev, and A. Charkin, “Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon,” Nat. Geosci. 9, 361–365 (2016).

    Article  Google Scholar 

  59. S. S. Shvarts, Ecological Tendencies of Evolution (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  60. S. C. Stearns, The Evolution of Life History (Oxford University Press, Oxford, 1992)

    Google Scholar 

  61. Stockholm Convention on Persistent Organic Pollutants. Report of the Persistent Organic Pollutants Review Committee on the Work of its Ninth Meeting (2013).

  62. T. Tesi, F. Muschitiello, R. H. Smittenberg, M. Jakobsson, J. E. Vonk, P. Hill, A. Andersson, and N. Kirchner et al. Nat. Communic. 7, 1–9.

  63. E. V. Venitsianov and A. P. Lepikhin, Physicochemical Principles of Simulation of the Migration and Transformation of Heavy Metals in Natural Waters (Ros-NIIVKh, Yekaterinburg, 2002) [in Russian].

    Google Scholar 

  64. V. I. Vernadsky, “Biogeochemical problems,” Tr. Biogeokhim. Lab., 16, 10–54 (1980).

    Google Scholar 

  65. V. I. Vernadsky, Biosphere and Noosphere (Nauka, Moscow, 1989) [in Russian]

    Google Scholar 

  66. V. I. Vernadsky, Scientific Ideas as Planetary Phenomenon (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  67. C. H. Walker, S. P. Hopkin, R. M. Sibly, and D. B. Peakall, Principles of Ecotoxicology (2nd Edition) (Taylor & Francis Ltd, London, 2001).

    Google Scholar 

  68. World’s Mineral Resources as of January 1, 1997. A Statistic Handbook (Official Edition) of “Aerogeologiya”, Ministry of Nature Management of FGUNPP (Inform–Analit. Ts. Mineral, Moscow, 1998) [in Russian].

  69. World’s Mineral Resources as of January 1, 2001. A Statistic Handbook (Official Edition) of “Aerogeologiya”, Ministry of Nature Management of FGUNPP (Inform–Analit. Ts. Mineral, Moscow, 2002) [in Russian].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. I. Moiseenko.

Additional information

Original Russian Text © T.I. Moiseenko, 2017, published in Geokhimiya, 2017, No. 10, pp. 841–862.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, T.I. Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. Geochem. Int. 55, 841–860 (2017). https://doi.org/10.1134/S0016702917100081

Download citation

Keywords

  • biogeochemical cycles
  • anthropogenic pollution
  • evolution
  • critical loads