Skip to main content
Log in

Thermodynamic study of calcic amphiboles

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe 2+0.5 Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe 2+1.9 Fe 3+0.2 )[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe 2+1.6 Fe 3+0.2 )[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe 2+1.8 Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe 3+1.3 Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe 2+1.3 Fe 3+0.9 Al0.2) [Si6.4Al1.6O22](OH)2 (‒10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. W. Evans, M. S. Chiorso, and S. M. Kuehner, “Thermodynamic properties of tremolite: a correction and some comments,” Am. Mineral. 85, 466–472 (2000).

    Article  Google Scholar 

  • M. S. Ghiorso and B. W. Evans, “Thermodynamics of the amphiboles: Ca–Mg–Fe2+ quadrilateral,” Am. Mineral. 87, 79–98 (2002).

    Article  Google Scholar 

  • N. O. Gopal, K. V. Narasimhulu, and J. L. Rao, “EPR, optical, infrared and Raman spectral studies of actinolite mineral,” Spectrochim. Acta A 60, 2441–2448 (2004).

    Article  Google Scholar 

  • C. M. Graham and A. Navrotsky, “Thermochemistry of the tremolite–edenite amphiboles using fluorine analogues, and applications to amphibole–plagioclase–quartz equilibria,” Contrib. Mineral. Petrol. 93, 18–32 (1986).

    Article  Google Scholar 

  • F. C. Hawthorne, R. Oberti, G. E. Harlow, W. V. Maresch, R. F. Martin, J. C. Schumacher, and M. D. Welch, “Nomenclature of the amphibole supergroup,” Am. Mineral. 97, 2031–2048 (2012).

    Article  Google Scholar 

  • T. J. B. Holland, “Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model,” Am. Mineral. 74, 5–13 (1989).

    Google Scholar 

  • T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  • T. J. B. Holland and R. Powell, “An internally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  • K. Ishida, D. M. Jenkins, and F. C. Hawthorne, “Mid-IR bands of synthetic calcic amphiboles of tremolite-pargasite series and of natural calcic amphiboles,” Am. Mineral. 93 (7), 5–13 (2008).

    Article  Google Scholar 

  • D. M. Jenkins and K. N. Bozhilov, “Re-investigation of the upper-thermal stability of ferro-actinolite,” Denver Annual Meeting, Paper No. 220-4 (2002).

    Google Scholar 

  • D. M. Jenkins and K. N. Bozhilov, “Stability and thermodynamic properties of ferro-actinolite: a re-investigation,” J. Metamorph. Geol. 29 (3), 333–383 (2003).

    Google Scholar 

  • D. M. Jenkins, T. J. B. Holland, and A. K. Clare, “Experimental determination of the pressure–temperature stability field and thermochemical properties of synthetic tremolite,” Am. Mineral. 76, 458–469 (1991).

    Google Scholar 

  • W.-A. Kahl and W. V. Maresch, Enthalpies of formation of tremolite and talk by high-temperature solution calorimetry— a consistent picture,” Am. Mineral. 80, 1345–1357 (2001).

    Article  Google Scholar 

  • W. A. Kahl, W. V. Maresch, and M. D. Welch, “Enthalpy of formation of pargasite by high-temperature solution calorimetry and heat capacity of pargasite and fluoropargasite by differential scanning calorimetry,” Eur. J. Mineral. 15, 617–628 (2003).

    Article  Google Scholar 

  • I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  • I. A. Kiseleva, and L. P. Ogorodova, Application of hightemperature solution calorimetry for determination of enthalpy of formation of hydroxyl-bearing minerals by example of talc and tremolite,” Geokhimiya, No. 12, 1745–1755 (1983).

    Google Scholar 

  • I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  • I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites— heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Article  Google Scholar 

  • P. Makreski, G. Jovanovski, and A. Gajovic, “Minerals from Macedonia XVII. Vibrational spectra of some common appearing amphiboles,” Vibrational Spectroscopy 40, 98–109 (2006).

    Article  Google Scholar 

  • A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).

    Article  Google Scholar 

  • L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  • L. P. Ogorodova, I. A. Kiseleva, L. V. Mel’chakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric determination of the enthalpy of formation for pyrophyllite,” Russ. J. Phys. Chem. 85 (9), 1492–1494 (2011).

    Article  Google Scholar 

  • R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1995).

  • R. A. Robie and J. W. Stout, “Heat capacity from 12 to 305 K and entropy of talc and tremolite,” J. Phys. Chemistry 67, 2252–2256 (1963).

    Article  Google Scholar 

  • D. K. Shumakher, “Assessment of two- and three-valent iron in amphiboloes using microprobe data,” Zap. Ross. Mineral. O-va, No. 1, 101–109 (1998).

    Google Scholar 

  • E. A. Smelik, D. M. Jenkins, and A. Navrotsky, “A calorimetric study of synthetic amphiboles along the tremolite–tschermakite join and heats of formation of magnesiohornblende and tschermakite,” Am. Mineral. 79, 1110–1122 (1994).

    Google Scholar 

  • Al. Valero, An. Valero, and P. Vieillard, “The thermodynamic properties of the upper continental crust: exergy, Gibbs free Energy, and Enthalpy. Energy 41, 121–127 (2012).

    Google Scholar 

  • P. Vieillard, “Prediction of enthalpy of formation based on refined crystal structures of multisite compounds: Part 2. Application to minerals belonging to the system Li2O–Na2O–K2O–BeO–MgO–CaO–MnO–FeO–Fe2O3–Al2O3–SiO2–H2O. Results and discussion,” Geochim. Cosmochim. Acta 58 (19), 4065–4107 (1994).

    Article  Google Scholar 

  • P. Vieillard, “A new method for the prediction of Gibbs free energies of formation of phyllosilicates (10 and 14 Å) based on the electronegativity scale,” Clays Clay Miner. 50, 352–363 (2002).

    Article  Google Scholar 

  • W. F. Weeks, “Heats of formation of metamorphic minerals in the system CaO–MgO–SiO2–H2O and their petrological significance,” J. Geol. 64, 456–472 (1956).

    Article  Google Scholar 

  • M. D. Welch and A. R. Pawley, “Tremolite: new enthalpy and entropy data from a phase equilibrium study of the reaction tremolite = 2 diopside + 1.5 orthoenstatite + ß-quartz + H2O,” Amer. Mineral. 76, 1931–1939 (1991).

    Google Scholar 

  • H. R. Westrich and A. Navrotsky, “Some thermodynamic properties of fluorapatite, fluorpargasite, and fluorphlogopite,” Am. J. Sci. 281, 1091–1103 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Original Russian Text © L.P. Ogorodova, I.A. Kiseleva, M.F. Vigasina, L.V. Mel’chakova, I.A. Bryzgalov, D.A. Ksenofontov, 2017, published in Geokhimiya, 2017, No. 9, pp. 824–831.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Kiseleva, I.A., Vigasina, M.F. et al. Thermodynamic study of calcic amphiboles. Geochem. Int. 55, 814–821 (2017). https://doi.org/10.1134/S0016702917080067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917080067

Keywords

Navigation