Skip to main content
Log in

Composition and geodynamic setting of Late Paleozoic magmatism of Chukotka

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports the results of petrogeochemical and isotope (Sr-Nd-Pb-Hf) study of the Late Paleozoic granitoids of the Anyui–Chukotka fold system by the example of the Kibera and Kuekvun massifs. The age of the granitoids from these massifs and granite pebble from conglomerates at the base of the overlying Lower Carboniferous rocks is within 351–363 Ma (U-Pb, TIMS, SIMS, LA-MC-ICP-MS, zircon) (Katkov et al., 2013; Luchitskaya et al., 2015; Lane et al., 2015) and corresponds to the time of tectonic events of the Ellesmere orogeny in the Arctic region. It is shown that the granitoids of both the massifs and granite pebble are ascribed to the I-type granite, including their highly differentiated varieties. Sr-Nd-Pb-Hf isotope compositions of the granitoids indicate a contribution of both mantle and crustal sources in the formation of their parental melts. The granitic rocks of the Kibera and Kuekvun massifs were likely formed in an Andean-type continental margin setting, which is consistent with the inferred presence of the Late Devonian–Early Carboniferous marginal-continental magmatic arc on the southern Arctida margin (Natal’in et al., 1999). Isotope data on these rocks also support the idea that the granitoid magmatism was formed in a continental margin setting, when melts derived by a suprasubduction wedge melting interacted with continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. V. Akinin, “New geochronological data on pre-Mesozoic rocks (Neoproterozoic to Devonian) of Arctic Chukotka,” ICAM-VI Abstracts, 95 (2011).

    Google Scholar 

  • J. G. Arth, “Some trace elements in trondhjemites: their implications to magma genesis and paleotectonic settings,” in Trondhjemites, Dacites, and Related Rocks, Ed. by F. Barker (Elsevier, Amsterdam, 1979), pp. 123–132.

    Chapter  Google Scholar 

  • A. Bouvier, J. D. Vervoort, and J. Patchett, “The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  • B. W. Chappell and A. J. R. White, “I- and S-type granites in the Lachlan Fold Belt,” Trans. R. Soc. Edinb.: Earth Sci. 83, 1–26 (1992).

    Article  Google Scholar 

  • B. W. Chappell, C. J. Bryant and D. Wyborn, “Peraluminous I-type granites,” Lithos 158, 142–153 (2012).

    Article  Google Scholar 

  • J.-Y. Chen, J.-H. Yang, J.-H. Zhang, J.-F. Sun, and S. A. Wilde, “Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence,” Lithos 162–163, 140–156 (2013).

    Article  Google Scholar 

  • C.-S. Cheong, S.-T. Kwon, and H. Sagong, “Geochemical and Sr-Nd-Pb isotopic investigation of Triassic granitoids and basement rocks in the northern Gyeongsang Basin, Korea: implications for the young basement in the East Asian continental margin,” The Island Arc, No. 11, 25–44 (2002).

    Article  Google Scholar 

  • J. D. Clemens, G. Stevens, and F. Farina, “The enigmatic sources of I-type granites: the peritectic connexion,” Lithos 126, 174–181 (2011).

    Article  Google Scholar 

  • A. Cocherie, “Systematic use of trace element distribution patterns in log–log diagrams for plutonic suites,” Geochim. Cosmochim. Acta 50, 2517–2522 (1986).

    Article  Google Scholar 

  • V. G. Ditmar, “Geological structure of the northern Chukchi region,” Tr. Arktich. Inst. 95, 5–85 (1938).

    Google Scholar 

  • B. R. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis, and C. D. Frost, “A geochemical classification for granitic rocks,” J. Petrol. 42 (11), 2033–2048 (2001).

    Article  Google Scholar 

  • M. L. Gelman, “Phanerozoic granite-metamorphic cupolas in northeastern Siberia. Paper 1. Geological history of Paleozoic and Mesozoic cupolas,” Tikhookean. Geol. 14 (4), 102–115 (1995).

    Google Scholar 

  • Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), Vol. 1, pp. 1–572 [in Russian].

  • A. Grantz, P. E. Hart, and V. A. Childers, “Geology and tectonic development of the Amerasia and Canada basins, Arctic Ocean,” in Arctic Petroleum Geology, Ed. by A. M. Spencer, A. F. Embry, D. L. Gautier, A. V. Stoupakova, and K. Sorensen, Geol. Soc. London Mem. 35, 771–800 (2011).

    Google Scholar 

  • A. Grantz, T. E. Moore, and S. M. Roeske, Gulf of Alaska to Arctic Ocean: Geological Society of America Continental- Ocean Transect A-3, Scale 1: 500000 (Menlo Park 1991).

    Google Scholar 

  • S. M. Katkov, M. V. Luchitskaya, A. B. Kotov, E. B. Sal’nikova, and S. Z. Yakovleva “Late Paleozoic granitoids of Central Chukotka: structural position and age constraints,” Dokl. Earth Sci. 450 (1), 484–488 (2013).

    Article  Google Scholar 

  • N. N. Kruk, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGM SO RAN, Novosibirsk, 2015) [in Russian].

    Google Scholar 

  • N. A. Kulyukina, P. L. Tikhomirova, and V. O. Yapaskurt, “New data on the metamorphic petrology of rocks from the Kuekvun Uplift (northern Chukchi Peninsula),” Mosc. Univ. Geol. Bull. 68 (2), 89–95 (2013).

    Article  Google Scholar 

  • N. B. Kuznetsov, L. M. Natapov, E. A. Belousova, W. L. Griffin, and S. Y. O’Reilly, “First isotopic data on detrital zircons from the Engane-Pe Uplift (western Polar Urals): implications for the primary tectonic position of the Pre-Uralides–Timanides,” Dokl. Earth Sci. 426 (4), 567–573 (2009).

    Article  Google Scholar 

  • L. S. Lane, M. P. Cecile, G. E. Gehrels, M. K. Kos’ko, P.W. Layer, and R. R. Parrish, “Geochronology and structural setting of latest Devonian–Early Carboniferous magmatic rocks, Cape Kiber, northeast Russia,” Can. J. Earth Sci. 52, 147–160 (2015).

    Article  Google Scholar 

  • L. A. Lawver, A. Grantz, and L. M. Gahagan, “Plate kinematic evolution of the present Arctic Region since the Ordovician,” in Tectonic evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses, Ed. by E. L. Miller, S. Klemperer, and A. Grantz, Geol. Soc. Am., 2002), pp. 333–358.

    Chapter  Google Scholar 

  • S. Li, T. Wang, S. A. Wilde, Y. Tong, D. Hong, and Q. Guo, “Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China,” Lithos 134–135, 123–145 (2012).

    Article  Google Scholar 

  • M. V. Luchitskaya, S. D. Sokolov, A. B. Kotov, L. M. Natapov, E. A. Belousova, and S. M. Katkov, “Late Paleozoic granitic rocks of the Chukchi Peninsula: composition and location in the structure of the Russian Arctic,” Geotectonics 49 (4), 243–268 (2015).

    Article  Google Scholar 

  • M. V. Luchitskaya, S. D. Sokolov, G. E. Bondarenko, and S. M. Katkov, “Composition and geodynamic setting of granitoid magmatism in the Alyarmaut Uplift, western Chukchi Peninsula,” Geochem. Int. 48 (9), 891–916 (2010).

    Article  Google Scholar 

  • E. A. K. Middlemost, “Naming materials in magma/igneous rock system,” Earth Sci. Rev. 37, 215–224 (1994).

    Article  Google Scholar 

  • B. A. Natal’in, J. M. Amato, J. Toro, and J. E. Wright, “Paleozoic rocks of northern Chukotka Peninsula, Russian Far East: implications for the tectonic of Arctic region,” Tectonics 18 (4), 977–1003 (1999).

    Article  Google Scholar 

  • J. A. Pearce, “Sources and settings of granitic rocks,” Episodes 19 (4), 120–125 (1996).

    Google Scholar 

  • J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25 (4), 956–983 (1984).

    Article  Google Scholar 

  • A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article  Google Scholar 

  • C. Pin, S. Joannon, C. Bosq, B. Le Fevre, and P. Gauthier, “Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following selective separation of the analytes,” J. Anal. At. Spectrom. 18, 135–141 (2003).

    Article  Google Scholar 

  • G. O. Polzunenkov, V. V. Akinin, and I. Yu. Cherepanova, “New data on the age and composition of the Velitkenai and Kuekvun granite gneiss massifs (Arctic Chukchi): application to the development of model of granitoid mineralization,” in Gold of the Northern Pacific Framing. Proceedings of 2 nd International Mining-Geological Forum Devoted to the 100th Yu.A. Bilibin, Magadan, Russia, 2011 (SVKNII DVO RAN, 2011), pp. 170–171 [in Russian].

    Google Scholar 

  • P. Richard, N. Schimizu, and C. J. Allegre, “143Nd/146Nd a natural tracer: an application to oceanic basalts,” Earth Planet. Sci. Lett. 31 (2), 269–278 (1976).

    Article  Google Scholar 

  • M. P. Roberts and J. D. Clemens, “Origin of high-potassium, calc-alkaline, I-type granitoids,” Geology 21, 825–828 (1993).

    Article  Google Scholar 

  • T. W. Ruks, S. J. Piercey, J. J. Ryan, M. E. Villeneuve, and R. A. Creaser, “Mid- to late Paleozoic K-feldspar augen granitoids of the Yukon-Tanana terrane, Yukon, Canada: implications for crustal growth and tectonic evolution of the northern Cordillera,” GSA Bull. 118 (9–10), 1212–1231 (2006).

    Article  Google Scholar 

  • S. E. Shaw, V. R. Todd, D. L. Kimbrough, and N. J. Pearson, “A west-to-east geologic transect across the Peninsular Ranges batholith, San Diego County, California: zircon 176Hf/177Hf evidence for the mixing of crustaland mantle-derived magmas, and comparisons with the Sierra Nevada batholiths,” in Peninsular Ranges Batholith, Baja California and Southern California, Ed. by D. M. Morton and F. K. Miller, Geol. Soc. Amer. Mem. 211, 499–536 (2014).

    Google Scholar 

  • E. Sherer, C. Munker, and K. Mezger, “Calibration of the lutetium–hafnium clock,” Science 27 (5530), 683–687 (2001).

    Article  Google Scholar 

  • J. Singh, “Dehydration melting of tonalities. Part I. Beginning of melting,” Contrib. Mineral., Petrol. 125, 16–25 (1996a).

    Article  Google Scholar 

  • J. Singh, “Dehydration melting of tonalities. Part II. Beginning of melting,” Contrib. Mineral. Petrol. 125, 25–44 (1996b).

    Google Scholar 

  • S. D. Sokolov, M. I. Tuchkova, A. V. Ganelin, G. E. Bondarenko, and P. Layer, “Tectonics of the South Anyui suture, Northeastern Asia,” Geotectonics, 49 (1), 3–26 (2015).

    Article  Google Scholar 

  • J. S. Stacey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26 (2), 207–221 (1975).

    Article  Google Scholar 

  • State Geological Map on a Scale 1: 200 000. Anyui–Chaun Series. Sheets R-59-XXIII, XXIV. Explanatory Notes, Ed. by N. M. Samorukov and V. T. Matveenko, (Mingeo, Moscow, 1984) [in Russian].

  • S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. London. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  • P. J. Sylvester, “Post-collisional alkaline granites,” J. Geol. 97, 261–280 (1989).

    Article  Google Scholar 

  • I. V. Tibilov, and I. Yu. Cherepanova, Geology of the Northern Chukotka: Modern State and Problems (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  • I. V. Tibilov, A. L. Milov, and I. A. Davydov, “Manifestation of Pre-Mesozoic granitoid magmatism in Chukotka,” Tikhookean Geol., No. 4, 95–98 (1986).

    Google Scholar 

  • O. M. Turkina, “Modeling geochemical types of tonalite–trondhjemite melts and their natural equivalents,” Geochem. Int. 38 (7), 640–651 (2000).

    Google Scholar 

  • V. A. Varlamova, G. M. Malysheva, B. V. Vyatkin, et al., Information Report on Uncompleted Works on Object “Creation of Digital Geological Map Set on a Scale 1: 500000 of the Chukchi Autonomous Region (FGUGP Georegion, Anadyr, 2004) [in Russian].

    Google Scholar 

  • V. E. Verzhbitsky, S. D. Sokolov, and M. I. Tuchkova, “Present-day structure and stages of tectonic evolution of Wrangel Island, Russian Eastern Arctic Region,” Geotectonics 49 (3), 165–192 (2015).

    Article  Google Scholar 

  • J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-type granites: geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 95 (4), 407–419 (1987).

    Article  Google Scholar 

  • L. P. Zonenshain, M. I. Kuzmin, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR Territory (Nauka, Moscow, 1990), vol. 2 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Luchitskaya.

Additional information

Original Russian Text © M.V. Luchitskaya, B.V. Belyatsky, E.A. Belousova, L.M. Natapov, 2017, published in Geokhimiya, 2017, No. 8, pp. 685–714.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchitskaya, M.V., Belyatsky, B.V., Belousova, E.A. et al. Composition and geodynamic setting of Late Paleozoic magmatism of Chukotka. Geochem. Int. 55, 683–710 (2017). https://doi.org/10.1134/S0016702917080043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917080043

Keywords

Navigation