Skip to main content
Log in

Carbon-bearing phases in shock-induced melt zones of the Elga meteorite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The mineralogy and texture of shock-induced melt veinlets and melt pockets in silicate inclusions in the Elga IIE iron meteorite have been studied by reflected-light optical microscopy, EMPA, SEM, Raman spectroscopy and TEM. The results suggest that Elga experienced two discrete impact events. The earlier event involved the collision of a metallic projectile with a silicate target and resulted in partial melting and recrystallization of the silicate material, forming schreibersite and oxide rims between the metal and silicate. The later impact event resulted in melt pockets in the silicate inclusions and was associated with fragmentation, melting, and brecciation of the rims and displacement of some fragments into the melt pockets. These fragments are shown to contain carbon-bearing phases: siderite and amorphous sp 2 carbon, which form carbon–oxide, siderite–oxide, and siderite–schreibersite associations. The fact that the carbon-bearing fragments are spatially constrained to shock breccia and melt zones indicates that these fragments are genetically related to the impact process and that their carbon-bearing phases are of cosmic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Ahlawat and V. G. Sathe, “Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power,” J. Raman Spectrosc. 42, 1087–1094 (2011).

    Article  Google Scholar 

  • P. Beck, T. Ferroir, and P. Gillet, “Shock-induced compaction, melting and entrapment of atmospheric gases in Martian meteorites,” Geophys. Res. Lett. 34, L01203 (2007).

    Article  Google Scholar 

  • M. S. Bell, “Experimental shock decomposition of siderite and the origin of magnetite in martian meteorite ALH 84001,” Meteorit. Planet. Sci. 42 (6), 935–949 (2007).

    Article  Google Scholar 

  • J. C. Bridge and M. M. Grady, “Evaporite mineral assemblages in the nakhlite (Martian) meteorites,” Earth Planet. Sci. Lett. 176, 267–279 (2000).

    Article  Google Scholar 

  • N. Buzgar, and A. I. Apopei, “The Raman study of certain carbonates,” Analele Stiintifice Ale Universitatii, Al. I. Cuza Iasi Geologie 55, 97–112 (2009).

    Google Scholar 

  • L. Casanova, T. Graf, and K. Marti, “Discovery of an unmelted H-chondrite inclusion in an iron meteorite,” Science 268, 540–542 (1995).

    Article  Google Scholar 

  • R. N. Clayton, T. K. Mayeda, E. Olsen, and M. Prinz, “Oxygen isotope relationships in iron meteorites,” Earth Planet. Sci. Lett. 65, 229–232 (1983).

    Article  Google Scholar 

  • M. I. D’yakonov, V. Ya. Kharitonova, and A. A. Anvel, Chemical Composition of Meteorites (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  • M. J. Gaffey and S. L. Gilbert, “Asteroid 6 Hebe: the probable parent body of the H-type ordinary chondrites and the IIE iron meteorites,” Meteorit. Planet. Sci. 33, 1281–1295 (1998).

    Article  Google Scholar 

  • L. A. J. Garvie and A. J. Craven, “Use of electron-energy loss near-edge structure in the study of minerals,” Am. Mineral. 79, 411–425 (1994).

    Google Scholar 

  • J. G. Gleason, D. A. Kring, D. H. Hill, and W. V. Boynton, “Petrography and bulk chemistry of Martian orthopyroxenite ALH 84001: implications for the origin of secondary carbonates,” Geochim. Cosmochim. Acta 61, 3503–3512 (1977).

    Article  Google Scholar 

  • D. C. Golden, D. W. Ming, C. S. Schwandt, H. V. Lauer, Jr., R. A. Socki, R. V. Morris, G. E. Lofgren, and C. A. McKey, “A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH 840001,” Am. Mineral. 86, 370–375 (2001).

    Article  Google Scholar 

  • P. R. Graves, C. Johnston, and J. J. Campaniello, “Raman scattering in spinel structure ferrites,” Mater. Res. Bull. 23, 1651–1660 (1988).

    Article  Google Scholar 

  • L. J. Hicks, J. C. Bridges, and S. J. Gurman, “Ferric saponite in the nakhlite martian meteorites,” Geochim. Cosmochim. Acta 136, 194–210 (2014).

    Article  Google Scholar 

  • Y. Ikeda and M. Prinz, “Petrology of silicate inclusions in the Miles IIE iron,” Proc. NIPR Symp. Antarct. Meteorites 9, 143–173 (1996).

    Google Scholar 

  • N. R. Khisina, A. A. Shiryaev, A. A. Averin, S. V. Teplyakova, and R. Wirth, “Raman spectroscopy of carbonaceous and oxide phases in impact melted zones of Elga meteorite,” GeoRaman-2016, abstract # 67 (2016).

  • A. King, T. Henkel, S. Chapman, H. Busemann, D. Rost, C. Guillermier, M. R. Lee, I. A. Franchi, and I. C. Lion, “Amorphous carbon grains in the Murchison meteorite,” Lunar Planet. Sci. Conf. 42, #2604 pdf (2011).

  • A. V. Korochantsev, PhD Thesis (GEOKhI, Moscow, 2007) [in Russian].

    Google Scholar 

  • G. Kurat, M. E. Varela, and E. Zinner, “Silicate inclusions in the Kodaikanal IIE iron meteorite,” Lunar Planet. Sci. Conf. 36. #1814 pdf (2005).

  • G. Kurat, E. Zinner, and M. E. Varela, “Trace element studies of silicate-rich inclusions in the Guin (UNGR) and Kodaikanal (IIE) iron meteorites,” Meteorit. Planet. Sci. 42, 1441–1463 (2007).

    Article  Google Scholar 

  • L. G. Kvazha, Yu. G. Lavrent’ev, and N. V. Sobolev, “Silicate inclusions and evidence of impact metamorphism in the Elga octahedrite,” Meteoritika 33, 143–147 (1974).

    Google Scholar 

  • K. L. Larsen and O. F. Nielsen, “Micro-Raman spectorscopic investigations on the carbonaceous meteorites Allende, Axtell and Murchison,” J. Raman Spectrosc. 37, 217–222 (2006).

    Article  Google Scholar 

  • S. A. Leuw, E. Rubin, and J. T. Wasson, “Carbonates in CM chondrites: complex formation histories and comparison to carbonates in CI chondrites,” Meteorit. Planet. Sci. 45 (4), 513–530 (2010).

    Article  Google Scholar 

  • P. Lindgren, M. R. Lee, M. R. Sofe, and M. E. Zolensky, “Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: evidence for aqueous alteration prior to complex mixing,” Meteorit. Planet. Sci. 48 (6), 1074–1090 (2013).

    Article  Google Scholar 

  • T. J. McCoy, “Silicate-bearing IIE irons: early mixing and differentiation in a core-mantle environment and shock resetting of ages,” Meteoritics 30, 542–543 (1995).

    Google Scholar 

  • K. H. McDermott, R. C. Greenwood, I. A. Franchi, M. Anand, and E. R. D. Scott, “The formation of the IIE iron meteorites,” Lunar Planet. Sci. Conf. 45 #1910 pdf (2014).

  • E. Olsen, A. Davis, R. J. Clarke, Jr., L. Schultz, and H. W. Weber, “Watson: A new link in the IIE iron chain,” Meteoritics 29, 200–213 (1994).

    Article  Google Scholar 

  • E. G. Osadchii, G. V. Baryshnikova, and G. V. Novikov, “The Elga meteorite: Silicate inclusion and shock metamorphism,” Lunar Planet Sci. 12, 1049–1068 (1981).

    Google Scholar 

  • L. N. Plyashkevich, “Some data in composition and structure of the Elga iron meteorite,” Meteoritika 22, 51–60 (1962).

    Google Scholar 

  • G. Rana and U. C. Johri, “A study on structural and magnetic properties of Ni-substituted magnetite nanoparticles,” J. Alloys Compounds 577, 376–381 (2013).

    Article  Google Scholar 

  • E. R. D. Scott A. N. Krot, and A. Yamaguchi, “Formation of carbonates in martian meteorite ALH84001 from schock melts,” Meteorit. Planet. Sci. 32, A117 (1997).

    Article  Google Scholar 

  • P. P. K. Smith and P. R. Buseck, “Graphitic carbon in the Allende meteorite: a microstructural study,” Science 212, 322–324 (1981).

    Article  Google Scholar 

  • A. Steele, F. M. McCubbin, M. D. Fries, D. C. Golden, D. Ming, and L. G. Benning, “Graphite in the martian meteorite Allan Hills 84001,” Am. Mineral. 97, 1256–1259 (2012).

    Article  Google Scholar 

  • A. Steele, M. D. Fries, H. E. F. Amundsen, B. O. Mysen, M. L. Fogel, M. Schweizer, and N. Z. Boctor, “Comprehensive imaging and Raman spectroscopy of carbonate globules from martian meteorite ALH 84001 and a terrestrial analogue from Svalbard,” Meteorit. Planet. Sci. 42, 1549–1566 (2007).

    Article  Google Scholar 

  • S. N. Teplyakova, M. Humayun, C. A. Lorenz, and M. A. Ivanova, “A common parent for IIE iron meteorites and H chondrites,” Lunar Planet. Sci. Conf. 43, abstract #1130.pdf (2012).

  • S. N. Teplyakova, “Evolution of molten material in iron cores of small planets,” Solar Syst. Res., 45 (6), 515–522 (2011).

    Article  Google Scholar 

  • S. N. Teplyakova, N. R. Khisina, V. V. Artemov, and A. L. Vasil’ev, “Nanomineralogy of dendritic inclusions in the Elga iron meteorite,” Zap. Ross. Mineral. O-va, 141 (2), 42–52 (2012).

    Google Scholar 

  • S. N. Teplyakova, Yu. A. Kostitsyn, and N. N. Kononkova, “Differentiated precursor for silicate inclusions in the Elga iron meteorite,” Lunar Planet. Sci. Conf. 41, abstract #1686 (2010).

  • K. L. Thomas-Kerpta, S. I. Clemett, D. S. McKay, E. K. Gibsen, and S. J. Wentworth, “Origin of magnetite nanocrystals in martian meteorite ALH84001,” Geochim. Cosmochim. Acta 73, 6631–6677 (2009).

    Article  Google Scholar 

  • M. A. Tyra, J. Matzel, A. J. Brearley, I. D. Hutcheon, “Variability in carbonate petrography and nanosims 53Mn/53Cr systematic in paired CM1 chondrites ALH 84049 and ALH 84034,” Lunar Planet Sci. 41, #2687 pdf (2010).

  • F. Ulff-Møller, K. L. Rusmussen, M. Prinz, H. Palm, and B. Spettel, “Magmatic activity on the IVA parent body: Evidence from silicate-bearing iron meteorites,” Geochim. Cosmochim. Acta 59, 4713–4728 (1995).

    Article  Google Scholar 

  • V. I. Vronskii, “On the find of the Elga iron meteorite,” Meteoritika 22, 47–50 (1962).

    Google Scholar 

  • J. T. Wasson, “Ni, Ga, Ge and Ir in the metal of iron meteorites with silicate inclusions,” Geochim. Cosmochim. Acta 34, 957–964 (1970).

    Article  Google Scholar 

  • M. K. Weisberg, M. Prinz, R. N. Clayton, and T. K. Mayeda, “The CR (Renazzo-type) carbonaceous chondrite group and its implications,” Geochim. Cosmochim. Acta 57, 1567–1586 (1993).

    Article  Google Scholar 

  • B. L. Zeigler, A. Jolliff, R. L. Wang, D. T. Korotev, D. T. Kremser, and L. A. Haskin, “Formation of carbonate and oxyhydroxide minerals by impact of a volatilerich body,” Lunar Planet. Sci. Conf. 32, abstract #1243 pdf (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Khisina.

Additional information

Original Russian Text © N.R. Khisina, S.N. Teplyakova, R. Wirth, V.G. Senin, A.A. Averin, A.A. Shiryaev, 2017, published in Geokhimiya, 2017, No. 4, pp. 287–301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khisina, N.R., Teplyakova, S.N., Wirth, R. et al. Carbon-bearing phases in shock-induced melt zones of the Elga meteorite. Geochem. Int. 55, 317–329 (2017). https://doi.org/10.1134/S0016702917040036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917040036

Keywords

Navigation