Geochemistry International

, Volume 55, Issue 3, pp 231–250 | Cite as

Modeling the dynamics of sublimation of fractured rocks in the lithospheric mantle wedge beneath volcanoes of the Avacha group (Kamchatka)

  • V. N. Sharapov
  • G. V. Kuznetsov
  • V. P. Logachev
  • V. K. Cherepanova
  • A. N. Cherepanov
Article
  • 44 Downloads

Abstract

A quantitative analysis of sublimation of intensely fractured rocks in the mantle wedge was performed using a model of planar fracture channel. The use of dimensionless variables allowed us to analyze the influence of the Nusselt and Sherwood criteria on temperature and variation of the rates of dissolution of minerals and films on fracture walls and estimate both linear and mass sublimation rates. The results of this study predict relatively high rates of major element dissolution and remobilization by flows of magmatic and metamorphic gases over wide temperature range. Physical modeling of this process using natural mantle rock samples confirms the plausibility of the proposed model at least for the case of metamorphic-driven remobilization of elements from gas-liquid inclusions in metasomatized ultramafic rocks. This model provides a satisfactory explanation for the observed local heterophase alterations within ultramafic rocks that have experienced multistage deformation beneath volcanoes of the Kamchatka volcanic front.

Keywords

model sublimation mantle wedge experiment Avacha group of volcanoes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. F. Abkadyrov, Yu. Yu. Bukatov, and K. O. Geranin, “Results of microseismic sounding in the Avacha volcano area, in Natural Environment of Kamchatka,” Proceedings of 13th Regional Youth Conference, Petropavlovsk-Kamchatskii, Russia, 2014 (Kamchatsk. Gos. Univ., Petropavlosk-Kamchatskii, 2014), pp. 103–114, aer9.pdf.Google Scholar
  2. E. Aharonov, M. Spiegelman, and P. Kelemen, “Threedimensional flow and reaction in porous media,” J. Geophys. Res., 102, 14821–14834 (1997).CrossRefGoogle Scholar
  3. S. Arai and S. Ishimaru, “Insights into petrologycal characteristics of the lithosphere mantle wedge beneath arcs through peridotite xenoliths: a review,” J. Petrol. 49 (4), 359–395 (2008).Google Scholar
  4. S. Arai, S. Ishimaru, and V. M. Okrugin, “Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: implication for the metasomatic agent,” Island Arc 12 (2), 233–246 (2003).CrossRefGoogle Scholar
  5. L. I. Bazanova, O. A. Braitseva, M. Yu. Puzankov, and L. D. Sulerzhitskii, “Catastrophic Plinian eruptions of the initial phase of the formation of the Young cone of Avacha Volcano (Kamchaka),” Zh. Vulkanol. Seismol. 5, 20–40 (2003).Google Scholar
  6. L. I. Bazanova, O. A. Braitseva, I. V. Melekestsev, and L. D. Sulerzhitskii, “Catastrophic eruptions of Avacha volcano (Kamchatka) in the Holocene: chronology, dynamics, geomorphological and ecological effects, and long-term prediction,” Zh. Vulkanol. Seismol., 6, 3–8 (2004).Google Scholar
  7. A. Bénard, and D. M. Ionov, “Melt-and fluid–rock interaction in supra-subduction lithospheric mantle: evidence from andesite-hosted veined peridotite xenoliths,” J. Petrol. 54 (11), 2339–2378 (2013).CrossRefGoogle Scholar
  8. I. N. Bindeman, V. L. Leonov, V. V. Ponomareva, K. E. Watts, A. B. Perepelov, L. I. Bazanova, B. S. Singer, B. Jicha, and A. K. Schmitt, “Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions,” J. Volcanol. Geotherm. Res. 189 (1–2), 57–80 (2010).CrossRefGoogle Scholar
  9. S. A. Boldyrev, “Reflection of lithosphere structure and properties in the seismic field of the Kamchatka Region,” Zh. Fiz. Zemli 6, 3–28 (2002).Google Scholar
  10. V. K. Cherepanov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (NGTU, Novosibirsk, 2012).Google Scholar
  11. S. Demouchy, S. Tommasi, F. Darou, D. Marnprice, and P. Corder, “Deformation of olivine in torsion under hydrous conditions,” Phys. Earth Planet. Inter. 202–203, 56–70 (2012).CrossRefGoogle Scholar
  12. N. L. Dobretsov, I. Yu. Koulakov, and Yu. D. Litasov, “Migration paths of magma and fluids and lava compositions in Kamchatka,” J. Geol. Geophys. 53 (12), 1633–1661 (2012).Google Scholar
  13. E. N. Erlikh, Modern Structure and Quaternary Volcanism of the Western Pacific ring (Nauka, Novosibirsk, 1973) [in Russian].Google Scholar
  14. Fluid Flow and Transport in Rocks: Mechanisms and Effects Ed. by B. Jamtveit and B. W. D. Yardley (Chapman and Hall, New York, 1997).Google Scholar
  15. Geothermal and Mineral Resources of the Modern Volcanic Areas (IV DVO RAN, Petropavlovsk-Kamchatskii, 2005) [in Russian].Google Scholar
  16. L. I. Gontovaya, O. Yu. Riznicvhenko, I. N. Nuzhdina, and I. A. Fedorchenko, “Avacha volcanic group: deep structure and seismic features,” Proceedings of Conference, Petropavlovsk-Kamchatskii, Russia, 2010 (Petropavlosk Kamchatskii, 2010), pp. 50–58 [in Russian].Google Scholar
  17. High-Preesure Vapor in Energetics (Gosenerg. Izd., Moscow–Leninrad, 1950) [in Russian].Google Scholar
  18. D. A. Ionov, “Petrology of mantle wedge lithosphere: new data on supra subduction zone peridotite xenoliths from the andesitic Avacha Volcano, Kamchatka,” J. Petrol. 51 (1–2), 327–361 (2010).CrossRefGoogle Scholar
  19. S. Ishimaru and S. Arai, “Peculiar Mg–Ca–Si metasomatism along a shear zone within the mantle wedge: inference from Avacha xenoliths from Avacha volcano,” Contrib. Mineral. Petrol. 161, 703–725 (2011)CrossRefGoogle Scholar
  20. S. Ishimaru, S. Arai, Y. Ishida, and V. M. Okrugin, “Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha Volcano, Southern Kamchatka,” J. Petrol. 48 (2), 395–433 (2007).CrossRefGoogle Scholar
  21. J.-I. Kimura, B. R. Hacker, P. E. van Keken, H. Kawabata, T. Yoshida, and R. Stern, “Arc Basalt Simulator version 2, a simulation for slab dehydration and fluidfluxed mantle melting for arc basalts: Modeling scheme and application,” G3, 9 (9) (2009). Q09004. doi 10.1029/2008GC002217Google Scholar
  22. A. V. Koloskov, Ultrabasic Inclusions and Volcanic Rocks as Self-Regulating Geological Syste, (Nauchnyi Mir, Moscow, 1999) [in Russian].Google Scholar
  23. A. V. Koloskov, and D V. Kovalenko, “New age dates of the manifestation of Cenozoic volcanism on Kamchatka,” Vestn. KRAUNTs. Nauki Zemle, 1 (13), 231–236 (2009).Google Scholar
  24. M. A. Korzhinsky, S. I. Tkachenko, R. F. Bulgakov, and K. I. Shmulovich, Stufy of Ore and Mineral Formation from high-temerature fumaroles gases om Kudryavy Volcano, Iturup Islamd, Kuril Islands, Geokhimiya, No. 4, 410–422 (1999).Google Scholar
  25. V. I. Krylov and P. I. Monastyrskii, Computational Methods (Nauka, Moscow, 1976) [in Russian].Google Scholar
  26. M. Kuhn, Reactive Flow of Hydrothermal Deposits. LNES. 103 (Springer-Verlag, New York, 2004).CrossRefGoogle Scholar
  27. S. S. Kutateladze, Principles of Heat Exchange Theory (Nauka, Novosibirsk, 1970) [in Russian].Google Scholar
  28. F. Sh. Kutyev and V. N. Sharapov, Petrogenesis beneath Volcanoes (Nedra, Moscow, 1979) [in Moscow].Google Scholar
  29. G. V. Kuznetskov, V. N. Sharapov, and V. A. Faleev, “Estimation of composition of residula melts in mantlewedge ultrabasites beneath the Avacha volcanic group by heating with reduced gas flow,” in Proceedings of 16th All-Russian Conference on Experimental Mineralogy (Chernogolovka, 2010), pp. 60–61.Google Scholar
  30. V. L. Leonov, Structural Conditions of Localization of High-Temperature Hydrotehrmal Vents (Nauka, Moscow, 1989) [in Russian].Google Scholar
  31. V. L. Leonov, I. N. Bindeman, and A. N. Rogozin, “New Ar-Ar age data on ignimbrites of Kamchatka,” in Proceedings on the Volcanologist Day Conference, Petropavlosk-Kamchatskii, Russia, 2008, pp. 187–196. http://www.kscnet.ru/ivs/publication/volc_-day/2008/art23.pdfGoogle Scholar
  32. B. V. Levin, and E. V. Sasorova, Seismicity of the Pacific Region. Reveaing Global Trends (Yanus-K, Moscow, 2012) [in Russian].Google Scholar
  33. V. I. Levina, A. V. Lander, S. V. Mityushkina, and A. Yu. Chebrova, “The seismicity of the Kamchatka region: 1962–2011,” J.Volcanol. Seismol. 7 (1), 37–57 (2013).CrossRefGoogle Scholar
  34. K. Michibayashi, T. Ohara, T. Satsukawa, S. Ishimaru, S. M. Arai, and V. M. Okrugin, “Rock seismic anisotropy of the low-velocity zone beneath the volcanic front in the mantle wedge,” Geophys. Res. Lett. 36 (12) (2009). doi 10.1029/2009GL038527Google Scholar
  35. M. A. Mikheev, and I. M. Mikheeva, Principles of Heat Transfer (Energiya, Moscow, 1977) [in Russian].Google Scholar
  36. Minerals (Moscow, Nauka, 1974) [in Russian].Google Scholar
  37. Yu. F. Moroz and I. L. Gontovaya, “Deep structure of the Avacha–Koryak volcanic group on Kamchatka,” Vulkanol. Seismol., No. 4, 3–10 (2003).Google Scholar
  38. V. N. Nikolaevskii, Geomechanics and Fluid Dynamics (Nedra, Moscow, 1996) [in Russian].CrossRefGoogle Scholar
  39. Numerical Simulation of Reactive Flow in Hot Aquifers, Ed. by Ch. Clauser (Sringer–Verlag: Berlin–Heidelberg–New York, 2003).Google Scholar
  40. S. V. Popruzhenko, I. V. Nizkous, and S. E. Aprelkov, “Upper mantle beneath Kamchatka: the depth model and its relation to tectonics,” Russ. J. Pac. Geol. 2 (2), 165–174 (2008).CrossRefGoogle Scholar
  41. N. Yu. Osorgin, “Chromatographic analysis of gas phase in minerals (technique, apparatus, methodology),” Preprint No. 1 (OIGGM SO RAN, Novosibirsk, 1990) [in Russian].Google Scholar
  42. N. I. Pavlenkova, “Role of fluids in the formation of seismic layering of the Earth’s crust,” Fiz. Zemli, No. 4, 51–61 (1996).Google Scholar
  43. Yu. L. Rebetsky, “Modern state of the earthquake prediction theory. Results of estimating natural stresses and new model of earthquake source (2008). yak/ifz. ru./pdf-lib-yak/pages359-395.pdf.Google Scholar
  44. Yu. L. Rebetsky, and A. V. Mikhailova, Role of the gravity forces in the formation of deep structure of shear zones,” Geodinam. Tektonofiz. 2 (1), 45–67 (2011).CrossRefGoogle Scholar
  45. Rock Physics and Phase Relations: A Handbook of Physical Constants, Ed. by T. J. Ahrens AGU Ref. Shelf 3, (Washington, 1995).Google Scholar
  46. Yu. I. Semenov, V. E. Akimov, M. A. Batazova, B. A. Dovzhenko, V. V. Ershov, A. R. Frolov, Ye. A. Gusev, I. A. Gusev, V. M. Konstantinov, E. A. Kuper, G. I. Kuznetsov, N. Kh. Kot, V. R. Kozak, P. V. Logatchev, V. R. Mamkin, et al., “60 KEV 30 KW electron beam facility for electron beam technology,” Proceedings of EPAC08, Genoa, Italy (Genoa, 2008), TUPP161.Google Scholar
  47. K. F. Sergeev, Tectonics of the Kuril Island Arc (Nauka, Moscow, 1976) [in Russian].Google Scholar
  48. V. N. Sharapov and V. I. Sotnikov, “On problem of quantitative modeling of the evolution of ore-magmatic systems,” Zh. Geol. Geofiz. 38 (5), 857–870 (1997).Google Scholar
  49. V. N. Sharapov, V. S. Golubev, and A. B. Sotnikov, “On the dynamics of formation of fill veins in relation with draining (model of “adiabatic mobilization”),” Zh. Geol. Geofiz. 9, 50–58 (1970).Google Scholar
  50. V. N. Sharapov, I. G. Simbireva, and P. M. Bondarenko, Structure and Geodynamics of the Seismofocal Zone of the Kuril–Kamchatka Region (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  51. V. N. Sharapov, I. G. Simbireva, and P. M. Bondarenko, Seismotectonics of the Kuril–Kamchatka Region and its Juncction with the Aleutian Arc. Seismological and Tectonophysical Models (IGG, Novosibirsk, 1992) [in Russian].Google Scholar
  52. V. N. Sharapov, A. N. Cherepanov, V. A. Akimtsev, and V. K. Cherepanova, “A model of the dynamics of sublimation of lithospheric rocks over basic magma chambers,” Dokl. Earth Sci. 385A (6), 680–683 (2002).Google Scholar
  53. V. N. Sharapov, V. A. Akimtsev, I. V. Ashchepkov, and A. N. Cherepanov, “Physicochemical Dynamics of Component Precipitation from Magmatic Gas Phase above Mantle Sources of Basic Melt,” Geochem. Int. 43 (12), 1126–1138 (2004).Google Scholar
  54. V. N. Sharapov, K. G. Ione, V. M. Mysov, M. P. Mazurov, and Yu. V. Perepevchko, Geocatalysis and Evolution of Mantle–Crustal Magmatogenic Fluid Systems (GEOS, Novosibirsk, 2007) [in Russian].Google Scholar
  55. V. N. Sharapov, A. A. Tomilenko, G. V. Kuznetsov, and S. V. Kovyazin, “Convective melting of spinel-facies lithospheric rocks above the seismofocal zone of the Kuril–Kamchatka region, “Volcasnism and Geodynamics. Proceedings of 4th All-Russian Symposium on Volcanology and Paleovolcanology, Petropavlovsk-Kamchatskii, Russia, 2009 (IVS DVO RAN, Petropavlovsk-Kamchatskii, 2009), pp. 228–231 (2009).Google Scholar
  56. V. N. Sharapov, M. P. Mazurov, A. A. Tomilenko, and V. A. Faleev, “Mass transfer in garnet ultramafic xenoliths subject to partial melting under hot reduced gas flows,” Russ. Geol. Geophys. 52 (2), 165–177 (2011).CrossRefGoogle Scholar
  57. V. N. Sharapov, A. S. Lapukhov, B. V. Guzman, and V. K. Cherepanova, “Dynamics of phase fronts in magmagenic fluid in the formation of gold and silver deposits in Southern Kamchatka,” Russ. J. Geol. Geophys. 53 (9), 837–852 (2012).CrossRefGoogle Scholar
  58. V. S. Sheimovich, Yu. M Puzankov, M. Yu. Puzankov, D. K. Golovin, and S. V. Moskaleva, “Manifestations of alkaline magmatism in the Avach Bay vicinity,” Vulkanol. Seismol. 4, 36–46 (2005).Google Scholar
  59. V. A. Soustelle, Tommasi, S. Demouchy, and D. A. Ionov, “Deformation and fluid–rock interaction in the suprasubduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha Volcano, Kamchatka,” J. Petrol. 51(1–2), 363–394 (2010).CrossRefGoogle Scholar
  60. N. G. Stenina, Transmission Electron Microscopy in Problems of Genetic Mienralogy (Nauka, Novosibirsk, 1985) [in Russian].Google Scholar
  61. N. G. Stenina, V. N. Sharapov, and G. V. Kutyeva, “Microstructure of phenol and xenocrystals of plagioclase from basaltic lavas of Kamchatka,” Dynamic Models of Physical Geochemistry, Ed. by V. A. Kuznetsov and V. N. Sharapov (Nauka, Novosibirsk, 1982), pp. 89–98 [in Russian].Google Scholar
  62. N. G. Stenina, V. N. Sharapov, and G. V. Kutyeva, “Microzoning of intensity of influence of hot fluid flows on fractured basites beneath the East Kamchatka volcanoes,” in Ore Zoning and Phyicochemistry of Hydrothermal Systems, Ed. by V. A. Kuznetsov (Nauka, Novosibirsk, 1980), pp. 113–120 [in Russian].Google Scholar
  63. J. Stimal, S. T. Powell, and G. U. Golla, “Porosity and permeability of the Tiwi geothermal field, Philippines, based on continuous and spot core measurements,” Geothermics, 33, 187–19 (2004).Google Scholar
  64. M. A. Styrikovich, and M. Kh. Khaibulin, “General tendencies in solubility of substances in water vapor,” in Intrapot Physicochemical Processes, Ed. by M. A. Styrikovich (Akad. Nauk SSSR, Moscow, 1967), pp. 11–28.Google Scholar
  65. A. M. Taran, E. A. Vakin, G. F. Plipenko, and A. M. Rozhkov, “Geochemistry of hydrothermal solutions and gases of the Mutnovsky hydrothermal system,” Zh. Vulkanol. Seismol. 5, 37–55 (1991).Google Scholar
  66. T. Yu. Timina, A. A. Tomilenko, S. Z. Smirnov, and D. V. Kuzmin, “Melt and fluid inclusion evidence of metasomatic alterations within the mantle wedge beneath Avacha volcano (Kamchatka, Russia),” (2012).Google Scholar
  67. T. Yu. Timina, S. V. Kovyazin, A. A. Tomilenko, and G. V. Kuznetsov, “Composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha volcano (Kamchatka, Russia),” 3 rd Biennial conference ACROFI III and TBG XIV, Novosibirsk: Russia, 2010 (Novosibirsk, 2010), pp. 248–249.Google Scholar
  68. T. Yu. Timina, S. V. Kovyazin, and A. A. Tomilenko, “The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha Volcano (Kamchatka),” Dol. Earth Sci. 442 (2), 115–119 (2012).Google Scholar
  69. T. Yu. Timina, A. A. Tomilenko, and E. N. Sokolova, “Composition of fluid and melt inclusions in minerals of orthopyroxenite xenoliths from Avacha volcano (Kamchatka),” Asian Current Research On Fluids Inclusions, 5 rd ACROFI, Xi’an, China (Xi’an, 2014).Google Scholar
  70. A. A. Tomilenko, S. V. Kovyazin, V. N. Sharapov, and G. V. Kuznetsov, “Metasomatic recrystallization and melting of ultrabasic rocks of mantle wedge beneath Avacha volcano, Kamchatka,” 3 rd Biennial conference ACROFI III and TBG XIV, Novosibirsk: Russia (Novosibirsk, 2010), pp. 248–249.Google Scholar
  71. P. E. van Keken, “The structure and dynamics of the mantle wedge,” Earth Planet. Sci. Lett. 215, 323–338 (2003).CrossRefGoogle Scholar
  72. M. P. Vulalovich, Thermodynamic Properties of Water and Water Vapor (GNTI–FEB, Moscow–Berlin, 1958) [in Russian].Google Scholar
  73. M. E. Zelenskii, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Novosibirsk, 2003) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Sharapov
    • 1
    • 2
  • G. V. Kuznetsov
    • 1
  • V. P. Logachev
    • 3
  • V. K. Cherepanova
    • 4
    • 5
  • A. N. Cherepanov
    • 5
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State Technical UniversityNovosibirskRussia
  5. 5.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations