Skip to main content
Log in

Gypsum solubility in water at 25°C

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The analysis of published data and our experimental results showed that the existing estimates of gypsum solubility in water (C m ) at 25°C range from 0.0147 to 0.0182 M. Such a scatter (more than 20%) is the result of a combined influence of experimental conditions and ability of gypsum to form supersaturated solutions. This influence appears most noticeable during gypsum dissolution in a dispersed state. Under such conditions, equilibrium is determined with a precision of no better than ±4.5%; if a flat surface similar to natural one is dissolved, the (C m ) value is characterized by the minimum scatter (±1%). According to experimental data (25°C), the solubility of gypsum particles in water is inversely proportional to their size at r < 1 μm and is r-invariant for larger grains. The invariance of (C m ) at r > 1–5 μm is supported by the data of analytical calculations using the approximate Ostwald–Freundlich equation. It is supposed that the difference of the concentrations of dissolved gypsum at the boundaries of the field of metastable state of gypsum-saturated groundwater can be 1–5%. The results of our study can be used for the description of gypsum dissolution in the models of mass transfer between gypsum-bearing rocks and groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. W. Adamson, Physical Chemistry of Surfaces (Wiley Interscience, New York, 1967).

    Google Scholar 

  • V. P. Baldin and A. E. Grushevskii, “Dependence of gypsum solubility on its crystal size,” Tr. Belgorod. Tekhnol. Inst. Stroitel. Mater. 19 (1), 3–8 (1976).

    Google Scholar 

  • A. C. Bennett and F. Adams, “Solubility and solubility product of gypsum in soil solutions and other aqueous solutions,” Soil Sci. Soc. Amer. Proc. 36, 288–291 (1972).

    Article  Google Scholar 

  • J. Blok and O. B. Waters, “The CaSO4–Na2SO4–NaCl–H2O system at 25 to 100°C,” J. Chem. Eng. Date, 13 (3–4), 336–344 (1968).

    Article  Google Scholar 

  • E. Bock, “On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride,” Can. J. Chem. 39 (9), 1746–1751 (1961).

    Article  Google Scholar 

  • P. P. Budnikov, Gypsum, its Study, and Application (Stroiizdat, Moscow–Leningrad, 1943) [in Russian].

    Google Scholar 

  • J. Christoffersen and M. R. Christoffersen, “The kinetics of dissolution of calcium sulfate dehydrate in water,” J. Cryst. Growh 35, 79–88 (1976).

    Article  Google Scholar 

  • J. I. Drever, The Geochemistry of Natural Waters (Prentice Hall, 1982).

    Google Scholar 

  • M. L. Dundon and E. Mack, “The solubility and surface energy of calcium sulfate,” J. Am. Chem. Soc. 45, 2479–2485 (1923).

    Article  Google Scholar 

  • B. V. Enustun and J. Turkevich, “Solubility of fine particles of strontium sulfate,” J. Am. Chem. Soc. 82, 4502–4509 (1960).

    Article  Google Scholar 

  • L. A. Hardie, “The gypsum–anhydrite equilibrium at one atmosphere pressure,” Am. Mineral. 52, 171–200 (1967).

    Google Scholar 

  • G. A. Hulett, “Relationships between surface-tension and solubility,” Zs. f phus. Chem. 34 (4), 385–406 (1901).

    Google Scholar 

  • G. A. Hulett and L. E. Allen, “The solubility of gypsum,” J. Am. Chem. Soc. 24 (7), 667–679 (1902).

    Article  Google Scholar 

  • N. A. Karazhanov, “Kinetics of calcium sulfate dissolution,” Tr. VNIIG 36, 177–188 (1959).

    Google Scholar 

  • E. V. Khamskii, Oversaturated Solutions (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  • S. R. Krainov and V. M. Shvets, Principles of Groundwater Geochemistry (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  • A. M. Kuznetsov, M. G. Oborina, and A. I. Sosnina, “Interaction of calcium sulfate with water,” Izv. Estesstv.-Nauchn. Inst. Permsk. Gos. Univ. 14 (1), 91–105. (1957)

    Google Scholar 

  • A. L. Lebedev, “Kinetics of gypsum dissolution in water,” Geochem. Int. 53 (9), 811–824 (2015).

    Article  Google Scholar 

  • A. L. Lebedev and A. V. Lekhov, “Interaction between gypsum-containing fractured rocks and groundwater,” Water Res. 26 (3), 277–285 (1999).

    Google Scholar 

  • V. M. Levchenko, “Solubility of calcium sulfate,” Gidrokhim. Mater. 17, 69–73 (1950).

    Google Scholar 

  • O. Levenshpil’, Engineering Handling of Chemical Processes (Khimiya, Moscow, 1969) [in Russian].

    Google Scholar 

  • W. M. Madgin and D. A. Swales, “Solubilities in the system CaSO4–NaCl–H2O at 25 and 35°C,” J. App. Chem. 6 (11), 482–487 (1956).

    Article  Google Scholar 

  • W. L. Marshall and R. Slusher, “Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0–110°,” J. Phys. Chem. 70 (12), 4015–4027 (1966).

    Article  Google Scholar 

  • F. S. Nakayama and Rasnick, B. A. “Calcium electrode method for measuring dissociation and solubility of calcium sulfate dihydrate,” Anal. Chem. 39, 1022–1023 (1967).

    Article  Google Scholar 

  • M. A. Raines and T. Dewers, “Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst,” Chem. Geol. 140, 29–48 (1997).

    Article  Google Scholar 

  • V. B. Ratinov and F. M. Ivanov, Chemistry in Building (Stroiizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  • E. B. Shternina, “Solubility of gypsum in aqueous salt solutions,” Izv. Sektora Fiz.-Khim. Analiza Inst. Obshch. Neorgan. Khimii Akad. Nauk SSSR im. Kkurnakova 17, 351–369 (1949).

    Google Scholar 

  • E. B. Shternina and E. V. Frolova, “Solubility in the CaCO3–CaSO4–NaCl–CO2–H2O system at 25°C,” Dokl. Akad. Nauk SSSR 47 (1), 34–36 (1945).

    Google Scholar 

  • B. S. Srikantan, “A note on the limits of supersaturation and the particle size of the solution,” J. Ind. Chem. Soc. 26 (1), 60–62 (1949).

    Google Scholar 

  • A. M. Sturn, “Gypsum solubility and scaling limits in saline waters,” Water Resour. Central Desalin. Rep. 59, 1–93 (1975).

    Google Scholar 

  • Sung-Tsuen Liu and G. Nancollas, “The kinetics of dissolution of calcium sulfate dihydrate,” J. Inorganic Nucl. Chem. 33 (8), 2311–2316 (1971).

    Article  Google Scholar 

  • S. A. Voznesenskii and R. S. Biktimirov, “Dissolution of inorganic salts in organic solvents and their mixtures and in their mixtures with water,” Zh. Neorgan. Khimii 2 (4), 942–945 (1957).

    Google Scholar 

  • A. B. Zdanovskii and F. P. Spiridonov, “Polytherm of Solubility of diverse CaSO4 • H2O modifications in water from 0 to 100°,” Zh. Prikl. Khimii 40 (5), 1152–1154 (1967).

    Google Scholar 

  • V. P. Zvrev, Hydrogeochemical Studies of the Gypsum–Groundwater System (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Lebedev.

Additional information

Original Russian Text © A.L. Lebedev, V.L. Kosorukov, 2017, published in Geokhimiya, 2017, No. 2, pp. 171–177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.L., Kosorukov, V.L. Gypsum solubility in water at 25°C. Geochem. Int. 55, 205–210 (2017). https://doi.org/10.1134/S0016702917010062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917010062

Keywords

Navigation