Skip to main content
Log in

Nuclear fuel cycle and its impact on the environment

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In this paper, we consider the present-day situation and outlooks of the development of nuclear power generation in Russia and other countries. It was noted that the implementation of the concept of a closed nuclear-fuel cycle accepted in Russia relies on the solution of the problem of the disposal of spent nuclear fuel (SNF) and radioactive waste (RAW). This paper presents the main results of investigations focused on the development of radiation-safe methods of manufacturing nuclear fuel elements, including mixed uranium–plutonium oxide fuel for fast-neutron reactors; creation of low waste-production technologies of SNF processing and RAW disposal; and the analysis of fundamental features of the behavior and speciation of radionuclides in environmental objects for the development of efficient methods of radioecological monitoring and remediation of radionuclide-contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANSI/ANS-16.1-1986. Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure (American National Society, La Grande Park, 1986).

  • O. N. Batuk, S. D. Conradson, O. N. Aleksandrova, H. Boukhalfa, B. E. Burakov, D. L. Clark, K. R. Czerwinski, A. R. Felmy, J. S. Lezama-Pacheco, S. N. Kalmykov, D. A. Moore, B. F. Myasoedov, T. Reed, D. D. Reilly, and R. C. Roback, “Multiscale speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats,” Environ. Sci. Technol. 49, 6474–6484 (2015).

    Article  Google Scholar 

  • N. E. Brezhneva, A. A. Minaev, and S. N. Oziraner, “Vitrification of high sodium–aluminum wastes: composition ranges and properties,” in Scientific Basis for Nuclear Waste Management. Vol. 1., Ed. by G. J. McCarthy (Plenum Press, New York and London, 1979), pp. 43–50.

    Chapter  Google Scholar 

  • M. Ceyhan and J. S. Lee, Proc. Int. Conf. on Management of Spent Fuel from Power Reactors (IAEA, Vienna, 2006).

    Google Scholar 

  • N. A. Chapman and I. G. McRinley, The Geological Disposal of Nuclear Waste (J. Wiley & Sons, Chichester, 1988).

    Google Scholar 

  • S. A. Dmitriev and S. V. Stefanovsky, Treatment of Radioactive Wastes (RKhTU im Mendeleeva, Moscow, 2000) [in Russian].

    Google Scholar 

  • Yu. S. Fedorov, B. A. Bibichev, B. Ya. Zilberman, and A. Yu. Shadrin, Proc. Int. Conf. “Global 2009” (Paris, SNF, 2009), paper # 2590.

    Google Scholar 

  • Yu. S. Fedorov, Yu. M. Kulyako, I. V. Blazheva, N. D. Goletskii, B. Ya. Zilberman, M. M. Metalidi, Yu. Yu. Petrov, N. N. Ryabkova, S. E. Vinokurov, T. I. Trofimov, and B. F. Myasoedov, “Dissolution of SNF VVER-1000 in a weakly acid solution of iron nitrate and extraction of actinides and rare-earth elements by TBP solutions,” Radiochemistry 58 (3) (2016).

  • S. Graeser, W. Postl, H.-P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, and F. Walter, “Struvite-(K), MgKPO4 · 6H2O, the potassium equivalent of struvite—a new mineral,” Eur. J. Mineral. 20, 629–633 (2008).

    Article  Google Scholar 

  • Q.-H. Hu, J.-Q. Weng, and J.-S. Wang, “Sources of anthropogenic radionuclides in the environment: a review,” J. Env. Radioact. 101, 426–437 (2010).

    Article  Google Scholar 

  • IAEA Annual Report 2013, GC(58)/3 (IAEA, Vienna 2014)

  • S. N. Kalmykov, I. E. Vlasova, A. Yu. Romanchuk, E. V. Zakharova, A. G. Volkova, and I. A. Presnyakov, “Partitioning and speciation of Pu in the sedimentary rocks aquifer from the deep liquid nuclear waste disposal,” Radiochim. Acta 103, 175–185 (2015).

    Google Scholar 

  • A. B. Kersting, D. W. Efurd, D. L. Finnegan, D. L. Rokop, D. K. Smith, and J. L. Thompson, “Migration of plutonium in ground water at the Nevada Test Site,” Nature 397, 56–59 (1999).

    Article  Google Scholar 

  • V. V. Kevrolev, “Rekol–continuous energy Monte Carlo code for neutron transport,” Preprint IAE-562115 (1993).

    Google Scholar 

  • R. B. Kotel’nikov, S. N. Bahskykov, A. I. Kashtanov, and T. S. Men’shikova, High-Temperature Nuclear Fuel (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  • Yu. M. Kulyako, S. E. Vinokurov, and B. F. Myasoedov, “Application of ceramicrete matrices for low-temperature solidification of liquid actinide-containing wastes,” in Recent Advances in Actinide Sciences, Ed. by R. Alvarez, N. D. Bryan and I. May (RSC, Cambridge, 2006), pp. 427–429.

    Google Scholar 

  • Yu. M. Kulyako, T. I. Trofimov, D. A. Malikov, S. A. Perevalov, M. D. Samsonov, S. E. Vinokurov, B. F. Myasoedov, A. Yu. Shadrin, “New approaches to reprocessing of oxide nuclear fuel,” Radiochemistry 52 (4), 344–349 (2010).

    Article  Google Scholar 

  • Yu. M. Kulyako, S. A. Perevalov, T. I. Trofimov, D. A. Malikov, M. D. Samsonov, S. E. Vinokurov, and B. F. Myasoedov, “Behavior of fission products in the course of dissolution of simulated spent nuclear fuel in iron nitrate solutions and of recovery of uranium and plutonium from the resulting solutions,” Radiochemistry 53 (6), 608–611 (2011a).

    Article  Google Scholar 

  • Y. M. Kulyako, T. I. Trofimov, E. G. Il’in, and B. F. Myasoedov, “New approaches to processing and fabrication of oxide nuclear fuels,” Russ. J. Gen. Chem. 81 (9), 1960–1965 (2011b).

    Article  Google Scholar 

  • Yu. M. Kulyako, T. I. Trofimov, M. D. Samsonov, S. A. Perevalov, S. E. Vinokurov, B. F. Myasoedov, and E. G. Il’In, “Use of microwave radiation for preparing uranium oxides from its compounds,” Radiochemistry 53 (6), 604–607 (2011c).

    Article  Google Scholar 

  • Y. M. Kulyako, S. A. Perevalov, T. I. Trofimov, D. A. Malikov, M. D. Samsonov, S. E. Vinokurov, B. F. Myasoedov, and A. Y. Shadrin, “Preparation of uranium oxides in nitric acid solutions by the reaction of uranyl nitrate with hydrazine hydrate,” Radiochemistry 55 (6), 567–573 (2013).

    Article  Google Scholar 

  • Yu. M. Kulyako, S. A. Perevalov, T. I. Trofimov, M. D. Samsonov, S. E. Vinokurov, D. A. Malikov, and B. F.Myasoedov, “Factors governing the efficiency of dissolution of UO2 ceramic pellets in aqueous solutions of iron nitrate,” Radiochemistry 56 (3), 247–251 (2014).

    Article  Google Scholar 

  • Y. M. Kulyako, T. I. Trofimov, S. A. Perevalov, D. A. Malikov, S. E. Vinokurov, M. D. Samsonov, B. F. Myasoedov, S. S. Travnikov, K. N. Dvoeglazov, and A. Y. Shadrin, “Preparation of uranium oxides by reductive denitration of uranyl nitrate under microwave heating,” Radiochemistry 57 (3), 251–254 (2015a).

    Article  Google Scholar 

  • Yu. M. Kulyako, T. I. Trofimov, M. D. Samsonov, S. E. Vinokurov, and B. F. Myasoedov “Preparation of powdered uranium oxides by microwave heating of substandard ceramic pellets of oxide nuclear fuel,” Radiochemistry 57 (2), 127–130 (2015b).

  • Yu. M. Kulyako, T. I. Trofimov, S. E. Vinokurov, M. D. Samsonov, and B. F. Myasoedov, “Obtaining and treatment of oxide nuclear fuel: new approaches and methods,” Vopr. Radiats. Bezopasn., No. 3, 13–22 (2015c).

    Google Scholar 

  • A. A. Maiorov, and I. B. Braverman, Technology of Production of Ceramic Uranium Dioxide Powders (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  • B. F. Myasoedov and E. G. Drozhko, “Up-to-date radioecological situation around the 'Mayak' nuclear facility,” J. All. Comp. 271–273, 216–220 (1998).

    Article  Google Scholar 

  • B. F. Myasoedov and S. N. Kalmykov, “Nuclear power industry and the environment,” Mendeleev Commun. 25 (5), 319–328 (2015).

    Article  Google Scholar 

  • B. F. Myasoedov, Y. M. Kulyako, T. I. Trofimov, S. A. Perevalov, S. E. Vinokurov, M. D. Samsonov, A.M. Fedoseev, A. A. Bessonov, and A. Y. Shadrin, “Preparation of Np, Pu, and U dioxides in nitric acid solutions in the presence of hydrazine hydrate,” Radiochemistry 55 (6), 574–580 (2013).

    Article  Google Scholar 

  • A. P. Novikov, S. N. Kalmykov, S. Utsunomiya, R. C. Ewing, F. Horreard, A. Merkulov, S. B. Clark, V. V. Tkachev, and B. F. Myasoedov, “Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia,” Science 314, 638–641 (2006).

    Article  Google Scholar 

  • A. P. Novikov, S. N. Kalmykov, B. F. Myasoedov, and I. A. Rovnyi, “Relation of radionuclides with colloid matter of groundwaters in the zone of the Karachaev pollution aureole,” Vopr. Radiats. Bezopasn., No. 1 (1), 12–22 (2009).

    Google Scholar 

  • A. E. Ringwood, S. E. Kesson, and K. D. Reeve, in Radioactive Waste Forms for the Future, Ed. by W. Lutze and R. C. Ewing (Elsevier, Amsterdam, 1988), pp. 233–334.

  • A. Yu. Romanchuk, S. N. Kalmykov, and R. A. Aliev, “Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations,” Radiochim. Acta 99, 137–144 (2011).

    Article  Google Scholar 

  • A. Yu. Romanchuk, S. N. Kalmykov, A. V. Egorov, Y. V. Zubavichus, A. A. Shiryaev, O. N. Batuk, S. D. Conradson, D. A. Pankratov, and I. A. Presnyakov, “Formation of crystalline PuO2+x · nH2O nanoparticles upon sorption of Pu(V,VI) onto hematite,” Geochim. Cosmochim. Acta 121, 29–40 (2013).

    Article  Google Scholar 

  • D. M. Roy, “New strong cement materials: chemically bonded ceramics,” Science 235 (4789), 651–658 (1987).

    Article  Google Scholar 

  • S. V. Stefanovsky, O. I. Stefanovskaya, S. E. Vinokurov, S. S. Danilov, and B. F. Myasoedov, “Phase composition, structure, and hydrolytic durability of glasses in the Na2O–Al2O3–(Fe2O3)–P2O5 system at replacement of Al2O3 by Fe2O3,” Radiochemistry 57 (4), 348–355 (2015).

    Article  Google Scholar 

  • G. Steinhauser, A. Brandl, and Th. E. Johnson, “Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts,” Sci. Tot. Env. 470–471), 800–817 (2014).

  • S. I. Stepanov, A. V. Boyarintsev, M. V. Vazhenkov, B. F. Myasoedov, E. O. Nazarov, A. M. Safiulina, I. G. Tananaev, H. Vin So, A. M. Chekmarev, and A. Y. Civadze, “CARBEX process, a new technology of reprocessing of spent nuclear fuel,” Russ. J. Gen. Chem. 81 (9), 1949–1959 (2011).

    Article  Google Scholar 

  • I. G. Tananaev and B. F. Myasoedov, “Problems of the nuclear fuel cycle,” Russ. J. Gen. Chem. 81 (2), 1925–1927 (2011).

    Article  Google Scholar 

  • T. I. Trofimov, M. D. Samsonov, S. E. Vinokurov, Yu. M. Kulyako, and B. F. Myasoedov “Supercritical fluid extraction of uranium and fission products in reprocessing of simulated spent nuclear fuel in weakly acidic solutions of Fe(III) nitrate in the presence of tributyl phosphate,” Radiochemistry 56 (2), 162–166 (2014).

    Article  Google Scholar 

  • TU 95414-2005 Powder of ceramic-grade uranium dioxide with uranium-235 content less than 5.0%. Technical conditions (2005).

  • V. I. Vernadsky, Essays and Speeches (Nauch. Khim.- Tekhn. Izd., Petrograd, 1922) [in Russian].

    Google Scholar 

  • S. E. Vinokurov, Yu. M. Kulyako, S. A. Perevalov, and B. F.Myasoedov, “Self-propagating high-temperature synthesis of actinides-containing pyrochlore-type matrices,” in Recent Advances in Actinide Sciences, Ed. by R. Alvarez, N. D. Bryan, and I. May, (RSC Rublishing, Cambridge, 2006), pp. 391–393.

    Google Scholar 

  • S. E. Vinokurov, Yu. M. Kulyako, S. A. Perevalov, and B. F.Myasoedov, “Immobilization of actinides in pyrochlore-type matrices produced by self-propagating high-temperature synthesis,” Comptes rendus—Chimie 10/10–11, 1128–1130 (2007).

    Article  Google Scholar 

  • S. E. Vinokurov, Yu. M. Kulyako, O. M. Slyunchev, S. I. Rovny, and B. F. Myasoedov, “Low–temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices,” J. Nucl. Mater. 385 (1), 189–192 (2009a).

    Article  Google Scholar 

  • S. E. Vinokurov, Yu. M. Kulyako, O. M. Slyunchev, S. I. Rovnyi, A. S. Wagh, M. D. Maloney, and B. F.Myasoedov, “Magnesium–potassium–phosphate matrices for immobilization of high-level liquid wastes,” Radiochemistry 51 (1), 65–72 (2009b).

    Article  Google Scholar 

  • S. E. Vinokurov, Yu. M. Kulyakov, and B. F. Myasoedov, “Immobilization of radioactive wastes in magnesium–potassium–phosphate matrices,” Ross. Khim. Zh. 54 (3), 81–88 (2010).

    Google Scholar 

  • I. E. Vlasova, S. N. Kalmykov, Yu. V. Konevnik, S. G. Simakin, I. S. Simakin, A. Yu. Anokhin, and Yu. A. Sapozhnikov, “Alpha track analysis and fission track analysis for localizing actinide-bearing microparticles in the Yenisey River bottom sediments,” Radiation Measurements 43, S303–S308 (2008).

    Article  Google Scholar 

  • I. E. Vlasova, Kalmykov, S. N. Kuzmenkova, N. V. Batuk, O. N. Ivanov, I. A. and Tananaev, I. G. “Physicochemical forms of alpha-radiating radionuclides in samples of bottom sediments of basin 17 (V–17, Staroe Boloto), PO Mayak,” Vopr. Radiats. Bezopasn., No. 2, 48–56 (2013).

  • A. S. Wagh, Chemically Bonded Phosphate Ceramics. Twenty-First Century Materials with Diverse Applications (Elsevier, Kidlington–Oxford, 2004).

    Google Scholar 

  • B. Ya. Zilberman, “Application of Purex-process to highly burned up NPP fuel in closed nuclear fuel cycle from the viewpoint of long-lived radionuclide localization,” Radiochemistry 42 (1), 1–14 (2000).

    Google Scholar 

  • B. Ya. Zilberman, E. A. Puzikov, D. V. Ryabkov, M. N. Makarychev-Mikhailov, A. Yu. Shadrin, Yu. S. Fedorov, and V. A. Simonenko, “Development, analysis, and simulation of a technological structure for reprocessing irradiated nuclear fuel from nuclear power plants by water-extraction methods,” Atomic Energy 107 (5), 333–347 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Myasoedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myasoedov, B.F., Kalmykov, S.N., Kulyako, Y.M. et al. Nuclear fuel cycle and its impact on the environment. Geochem. Int. 54, 1156–1167 (2016). https://doi.org/10.1134/S0016702916130115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916130115

Keywords

Navigation