Skip to main content
Log in

Microwave synthesis of nanosized model substances and sorption materials. Application to geochemical research

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

New methods were developed to synthesize nanosized phases for experimental study of the migration behavior of elements in natural conditions. The colloidal forms of palladium, platinum, and gold were obtained by microwave hydrothermal synthesis and stabilized by natural organic matters; their behavior at the contact with components of geochemical barriers is studied in model experiments. New approaches were proposed for designing sorption materials on the basis of nanosized magnetite. Polyfunctional sorbents with “core–multilayer shell” structure are synthesized by covalent and/or non-covalent immobilization of reagents on the surface of magnetic carrier under microwave heating. These sorbents are suitable for simultaneous or independent preconcentration the analytes of different nature under the analysis of aqueous media. The composition, structure, and sorption properties of new materials are investigated. The trace amounts of phenol derivatives and heavy metals were determined in waters to demonstrate the applicability of obtained sorbents for ecological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Allard, N. Menguy, J. Salomon, T. Calligaro, T. Weber, G. Calas, and M. F. Benedetti, “Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil),” Geochim. Cosmochim. Acta 68, 3079–3094 (2004).

    Article  Google Scholar 

  • M. Baalousha, “Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter,” Sci. Total Environ. 407, 2093–2101 (2009).

    Article  Google Scholar 

  • E. D. Bazilevskaya, D. Archibald, and C. E. Martinez, “Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions,” Geochim. Cosmochim. Acta 88, 167–182 (2012).

    Article  Google Scholar 

  • I. Bilecka and M. Niederberger, “Microwave chemistry for inorganic nanomaterials synthesis,” Nanoscale 2, 1358–1374 (2010).

    Article  Google Scholar 

  • S. Yu. Bratskaya, V. A. Volk, V. V. Ivanov, A. Yu. Ustinov, N. N. Barinov, and V. A. Avramenko, “A new approach to precious metals recovery from brown coals: correlation of recovery efficacy with the mechanism of metalhumic interactions,” Geochim. Cosmochim. Acta 73, 3301–3310 (2009).

    Article  Google Scholar 

  • J. M. Collins N. E. Leadbeater, “Microwave energy: a versatile tool for the biosciences,” Org. Biomol. Chem. 5, 1141–1150 (2007).

    Article  Google Scholar 

  • G. Giakisikli and A. N. Anthemidis, “Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review,” Anal. Chim. Acta 789, 1–16 (2013).

    Article  Google Scholar 

  • B. L. Hayes, Microwave Synthesis (CEM Publishing, Matthews, NC, 2002).

    Google Scholar 

  • J. R. Hein, B. McIntyre, and A. Koschinsky, “The global enrichment of platinum group elements in marine ferromanganese crusts,” in Extended Abstracts, 10th International Platinum Symposium, Oulu, Finland, 2005, Ed. by T. O. Tormanen and T. T Alapieti, (Oulu, 2005), pp. 98–101.

    Google Scholar 

  • E. Illes and E. Tombacz, “The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles,” J. Colloid Interface Sci. 295, 11–123 (2006)

    Article  Google Scholar 

  • H. M. Kingston, in: Inductively Coupled Plasma Mass Spectrometry, Ed. by A. Montaser (WileyVCH, New York–Chichester–Weinheim–Brisbane–Singapore–Toronto, 1998), p. 33.

  • I. Kubrakova, “Microwave sample preparation and preconcentration for ETAAS,” Spectrochim. Acta, Part B. 52, 1469–1481 (1997).

    Article  Google Scholar 

  • I. V. Kubrakova, “Microwave radiation in analytical chemistry: the scope and prospects for application,” Russian Chem. Rev. 71 (4), 283–294 (2002).

    Article  Google Scholar 

  • I. V. Kubrakova and E. S. Toropchenova, “Microwave sample preparation for geochemical and ecological studies,” J. Anal. Chem. 68 (6), 467–476 (2013).

    Article  Google Scholar 

  • I. V. Kubrakova, I. Ya. Koshcheeva, O. A. Tyutyunnik, and A. M. Asavin, “Role of organic matter in the accumulation of platinum in oceanic ferromanganese deposits,” Geochem. Int. 48 (7), 655–663 (2010).

    Article  Google Scholar 

  • I. V. Kubrakova, I. Ya. Koshcheeva, D. V. Pryazhnikov, L. Yu. Martynov, M. S. Kiseleva, and O. A. Tyutyunnik, “Microwave synthesis, properties and analytical possibilities of magnetite-based nanoscale sorption materials,” J. Anal. Chem. 69 (4), 336–346 (2014).

    Article  Google Scholar 

  • I. V. Kubrakova, O. A Tyutyunnik, I. Ya. Koshcheeva, A. Yu. Sadagov, and S. N. Nabiullina, “Migration behavior of platinum metals in natural and technogenic systems,” Geochem. Int. 12), 2016

  • R. Lucena, B. M. Simonet, S. Cardenas, and M. Valcarcel, “Potential of nanoparticles in sample preparation,” J. Chromatogr., A. 1218 (4), 620 (2011).

    Article  Google Scholar 

  • N. C. Mueller and B. Nowack, “Nanoparticles for remediation: solving big problems with little particles,” Elements 6 (6), 395–400 (2010).

    Article  Google Scholar 

  • A. P. Novikov, S. N. Kalmykov, S. Utsunomoya, R. C. Ewing, F. Horreard, A. Merkulov, S. B. Clark, V. V. Tkachev, and B. F. Myasoedov, “Colloidal transport of plutonium in the far-field of the Mayak Production Association, Russia,” Science 314, 638–641 (2006).

    Article  Google Scholar 

  • J. R. Peralta-Videa, L. Zhao, M. L. Lopez-Moreno, G. de la Rosa, J. Hong, and J. L. Gardea-Torresdey, “Nanomaterials and the environment: a review for the biennium 2008–2010,” J. Hazard. Mater. 186, 1–15 (2011).

    Article  Google Scholar 

  • K. L. Plathe, F. von der Kammer, M. Hassell, J. N. Moore, M. Murayama, T. Hofmann, and M. F.Hochella Jr., “The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation,” Geochim. Cosmochim. Acta 102, 213–225 (2012).

    Article  Google Scholar 

  • D. V. Pryazhnikov, I. V. Kubrakova, M. S. Kiseleva, L. Yu.Martynov, and I. Ya. Koshcheeva, “Preparation and structural characterization of nanosized magnetic solid-phase extractants,” Mendeleev Comm. 24 (6), 1–3 (2014).

    Google Scholar 

  • D. V. Pryazhnikov, M. S. Kiseleva, and I. V. Kubrakova, “Magnetic surface-modified nanosized sorbent for MSPE-HPLC-UV determination of 4-nonylphenol in natural waters,” Analit. kontrol’ 19 (3), 220–229 (2015).

    Google Scholar 

  • S. N. Shtykov, “Nanoanalytics: problems of concept and metrology,” Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo 5 (1), 55–60 (2013).

    Google Scholar 

  • V. L. Tauson, S. N. Rychagov, V. V. Akimov, S. V. Lipko, N. V. Smagunov, I. N. Gerasimov, R. G. Davletbaev, and B. A. Loginov, “Role of surface phenomena in concentrating incompatible elements: Au in pyrite from hydrothermal clays at thermal fields in southern Kamchatka,” Geochem. Int. 53 (11), 973–986 (2015).

    Article  Google Scholar 

  • S. Utsunomiya, A. Kersting, and R. C. Ewing Groundwater nanoparticles in the far field at the Nevada Test Site: mechanism for radionuclide transport. Environ. Sci. Technol. 43, 1293–1298 (2009).

  • Y. Wang, “Nanogeochemistry: nanostructures, emergent properties and their control on geochemical reactions and mass transfers,” Chem. Geol. 378–379, 1–23 (2014).

    Article  Google Scholar 

  • M. Wierucka and M. Biziuk, “Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples,” Tr. Anal. Chemistry 59, 50–58 (2014)

    Article  Google Scholar 

  • A. E. Williams-Jones, R. J. Bowell, and A. A. Migdisov, “Gold in solution,” Elements 5, 281–287 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kubrakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubrakova, I.V., Kiseleva, M.S. Microwave synthesis of nanosized model substances and sorption materials. Application to geochemical research. Geochem. Int. 54, 1261–1269 (2016). https://doi.org/10.1134/S0016702916130103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916130103

Keywords

Navigation