Skip to main content
Log in

Gold transport during magmatic degassing: Model experiments

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Interaction of metallic gold with (Na, K)Cl salt melts was investigated by the weight-loss method at 700–1000°C using silica glass ampoules. Interaction was not detected in hermetic evacuated ampoules over the whole temperature interval and even after the addition of 5 wt % Na2SO4 as a possible oxidizer to the salt. Gold solubility increased sharply in open ampoules, but this was accompanied by the evaporation of salt melt and, possibly, AuCl x . The limiting gold solubility in the salt melt at 860°C was estimated as 1 wt % or 10000 ppm. The model of gold transport in a gas phase during magmatic degassing invokes shallow gold extraction by salt melt, melt evaporation, and removal of precipitated metallic particles by the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. J. Bodnar, C. W. Burnham, and S. M. Sterner, “Synthetic fluid inclusions in natural quartz. III Determination of phase equilibrium properties in the system H2O–NaCl to 1000°C and 1500 bars,” Geochim. Cosmochim. Acta 49, 1861–1873 (1985).

    Article  Google Scholar 

  • A. I. Busev and V. M. Ivanov, Analytical Chemistry of Gold (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  • I. Chaplygin, M. Yudovskaya, L. Vergasova, and A. Mokhov, “Native gold from volcanic gases at Tolbachik 1975–1976 and 2012–2013 fissure eruption, Kamchatka,” J. Volcanol. Geotherm. Res. 307, 200–209 (2015).

    Article  Google Scholar 

  • D. Chareev, “The low temperature electrochemical growth of iron, nickel and other metallic single crystals from halide eutectic fluxes in a temperature gradient,” J. Crystal Growth 429, 63–67 (2015).

    Google Scholar 

  • T. P. Fisher, W. T. Giggenbach, Y. Sano, and S. N. Williams, “Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands,” Earth Planet. Sci. Lett. 160, 81–96 (1998).

    Article  Google Scholar 

  • M. A. Korzhinskii, S. I. Tkachenko, R. F. Bulgakov, and K. I. Shmulovich, “Condensate compositions and native metals in sublimates of high-temperature gas streams of Kudryavyi Volcano, Iturup Island, Kuril Islands,” Geochem. Int. 34 (12), 1057–1064 (1996).

    Google Scholar 

  • M. A. Korzhinsky, S. I. Tkachenko, K. I. Shmulovich, Y. F. Taran, and G. S. Steinberg, “Discovery of a pure rhenium mineral at Kudriavy volcano,” Nature 369, 51–52 (1994).

    Article  Google Scholar 

  • M. A. Korzhinsky, S. I. Tkachenko, K. I. Shmulovich, and G. S. Steinberg, “Native Al and Si formation,” Nature 375, 544 (1995).

    Article  Google Scholar 

  • V. I. Kovalenko, V. B. Naumov, M. L. Tolstykh, G. M. Tsareva, and N. N. Kononkova, “Composition and sources of magmas in Medvezh’ya Caldera (Iturup Island, Southern Kuriles) from a study of melt inclusions,” Geochem Int. 42 (5), 393–413 (2004).

    Google Scholar 

  • U. Onken, J. Rarey-Nies, and J. Gmehling, “The Dortmund data bank: a computerized system for retrieval, correlation, and prediction of thermodynamic properties of mixtures,” Int. J. Thermophys. 10 (3), 739–747 (1989).

    Article  Google Scholar 

  • E. G. Osadchii, S. E. Lunin, M. A. Korzhinskii, S. I. Tkachenko, and Yu. A. Taran, “f O2 and f S2 measurements by electrochemical sensors in high-temperature fumaroles of active volcanoes,” Geochem. Int. 35 (1), 66–73 (1997).

    Google Scholar 

  • G. Pokrovski, A. Borisova, and A. Bychkov, “Speciation and transport of metals and metalloids in geological vapors,” Rev. Mineral. Geochem. 76, 165–218 (2013).

    Article  Google Scholar 

  • G. S. Pokrovski, N. N. Akinfiev, A. Y. Borisova, A. V. Zotov, and K. Kouzmanov, “Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modeling,” Geol. Soc. London, Sp. Publ. (2014) doi 10.1144/SP402.4

    Google Scholar 

  • M. I. Ravich, Water–Salt Systems at Elevated Temperatures and Pressures (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  • E. K. Serafimova, L. A. Kaz’min, and T. A. Dobroskok, “Geochemistry of gold in posteruptive process on scoria cones of the northern breakthrough of the Great Tolbachik fissure eruption (GTFE),” Volcanol. Seismol., No. 4, 33–45 (2000).

    Google Scholar 

  • K. I. Shmulovih, “Formation of salt melts during magmatic degassing in an open system: evidence from the Kudryavyi Volcano, Iturup Island, the Kurils,” Dokl. Earth Sci. 365A (3), 361–365 (1999).

    Google Scholar 

  • K. I. Shmulovich and S. V. Churakov, “Natural fluid phases at high temperatures and low pressures,” J. Geoch. Explor. 62, 183–191 (1998).

    Article  Google Scholar 

  • A. C. Simon, M. R. Frank, T. Pettke, P. A. Candela, P. M. Piccoli, and C. A. Heinrich, “Gold partitioning in melt–vapor–brine systems,” Geochem. Cosmochim. Acta 69, 3321–3335 (2005).

    Article  Google Scholar 

  • S. Sourirajan and G. C. Kennedy, “The system H2O–NaCl at elevated temperatures and pressures,” Am. J. Sci. 62, 115–141 (1962).

    Article  Google Scholar 

  • Yu. A. Taran, J. W. Hedenquist, M. A. Korzhinsky, S. I. Tkachenko, and K. I. Shmulovich, “Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands,” Geochim. Cosmochim. Acta 59, 1749–1761 (1995).

    Article  Google Scholar 

  • S. I. Tkachenko, Yu. A. Taran, M. A. Korzhinskii, B. G. Pokrovsky, G. S. Shteinberg, and K. I. Shmulovich, “Gas jets of Kudryavyi Volcano, Iturup Island, Kuril Islands,” Dokl. Akad. Nauk 325 (4), 823–828 (1992).

    Google Scholar 

  • A. G. Vakulenko, Y. V. Alekhin, and M. V. Razina, “Solubility and thermodynamic properties of alkali chlorides in steam,” in Proc. II Inter. Symp. “Properties of Water and Steam” (Prague, 1989), pp. 395–401.

    Google Scholar 

  • L. P. Vergasova, G. L. Starova, E. K. Serafimova, S. K. Filatov, T. M. Filosofova, and R. L. Dunin-Bukovski, “Native gold deposits from gas emanations of cinder cones produced by the 1975–1976 Great Tolbachik fissure eruptions,” Volcanol. Seismol. 22, 493–504 (2001).

    Google Scholar 

  • M. A. Yudovskaya, V. V. Distler, I. V. Chaplygin, A. V. Mokhov, N. V. Trubkin, and S. A. Gorbacheva, “Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands,” Miner. Deposita 40, 828–848 (2006).

    Article  Google Scholar 

  • M. Zelensky, V. Kamenetsky, and J. Hedenquist, “Gold recycling and enrichment beneath volcanoes: A case study of Tolbachik, Kamchatka,” Earth Planet. Sci. Lett. 437, 35–46 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Shmulovich.

Additional information

Original Russian Text © K.I. Shmulovich, P.G. Bukhtiyarov, E.S. Persikov, 2016, published in Geokhimiya, 2016, No. 11, pp. 1015–1024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmulovich, K.I., Bukhtiyarov, P.G. & Persikov, E.S. Gold transport during magmatic degassing: Model experiments. Geochem. Int. 54, 979–988 (2016). https://doi.org/10.1134/S0016702916090093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916090093

Keywords

Navigation