Skip to main content
Log in

Magmatic evolution of the material of the Earth’s lower mantle: Stishovite paradox and origin of superdeep diamonds (Experiments at 24–26 GPa)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The ultrabasic–basic magmatic evolution of the lower mantle material includes important physicochemical phenomena, such as the stishovite paradox and the genesis of superdeep diamonds. Stishovite SiO2 and periclase–wüstite solid solutions, (MgO · FeO)ss, associate paradoxically in primary inclusions of superdeep lower mantle diamonds. Under the conditions of the Earth’s crust and upper mantle, such oxide assemblages are chemically impossible (forbidden), because the oxides MgO and FeO and SiO2 react to produce intermediate silicate compounds, enstatite and ferrosilite. Experimental and physicochemical investigations of melting phase relations in the MgO–FeO–SiO2–CaSiO3 system at 24 GPa revealed a peritectic mechanism of the stishovite paradox, (Mg, Fe)SiO3 (bridgmanite) + L = SiO2 + (Mg, Fe)O during the ultrabasic–basic magmatic evolution of the primitive oxide–silicate lower mantle material. Experiments at 26 GPa with oxide–silicate–carbonate–carbon melts, parental for diamonds and primary inclusions in them, demonstrated the equilibrium formation of superdeep diamonds in association with ultrabasic, (Mg, Fe)SiO3 (bridgmanite) + (MgO · FeO)ss (ferropericlase), and basic minerals, (FeO · MgO)ss (magnesiowüstite) + SiO2 (stishovite). This leads to the conclusion that a peritectic mechanism, similar to that responsible for the stishovite paradox in the pristine lower mantle material, operates also in the parental media of superdeep diamonds. Thus, this mechanism promotes both the ultrabasic–basic evolution of primitive oxide–silicate magmas in the lower mantle and oxide–silicate–carbonate melts parental for superdeep diamonds and their paradoxical primary inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Akaogi, “Phase transformations of minerals in the transition zone and upper part of the lower mantle,” in Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Sp. Paper 421, 1–13 (2007).

    Chapter  Google Scholar 

  • A. V. Bobrov and Yu. A. Litvin, “Peridotite–eclogite–carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions,” Russ. Geol. Geophys. 50 (12), 1221–1233 (2009).

    Article  Google Scholar 

  • D. J. Frost, B. T. Poe, R. G. Tronnes, C. Libske, F. Duba, and D. C. Rubie “A new large-volume multianvil system,” Phys. Earth Planet. Inter. 143, 507–514 (2004).

    Article  Google Scholar 

  • T. Gasparik and Yu. A. Litvin, “Stability of Na2Mg2Si2O7 and melting relations on the forsterite–jadeite join at pressures up to 22 GPa,” Eur. J. Mineral. 69 (2), 311–326 (1997).

    Google Scholar 

  • B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74 (2), 189–215 (2010).

    Article  Google Scholar 

  • P. C. Hayman, M. G. Kopylova, and F. V. Kaminsky, “Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil),” Contrib. Mineral. Petrol. 149, 430–445 (2005).

    Article  Google Scholar 

  • K. Hirose, “Phase transitions in pyrolite mantle around 670-km depth: implications for upwelling of plumes from the lower mantle,” J. Geophys. Res. 107 (B4), ECV 3–1–ECV 3–13 (2005).

    Google Scholar 

  • K. Hirose, Y. Fei, Y. Ma, and H. K. Mao, “The fate of subducted basaltic crust in the Earth’s lower mantle,” Nature 397, 53–56 (1999).

    Article  Google Scholar 

  • T. Irifune and A. E. Ringwood, “Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle,” Earth Planet. Sci. Lett. 117, 101–110 (1993).

    Article  Google Scholar 

  • T. Irifune and T. Tsuchiya, “Mineralogy of the Earth–phase transitions and mineralogy of the lower mantle,” in Treatise on Geophysics (Elsevier, 2007), pp. 33–62.

    Chapter  Google Scholar 

  • F. Kaminsky, “Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond,” Earth Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  • A. V. Kuzyura, Yu. A. Litvin, and T. Jeffries, “Interface partition coefficients of trace elements in carbonate–silicate parental media for diamonds and paragenetic inclusions (experiments at 7.0–8.5 GPa),” Russ. Geol. Geophys. 56 (1), 286–299 (2015).

    Google Scholar 

  • C. Liebske and D. J. Frost, “Melting phase relations in the MgO–MgSiO3 system between 16 and 26 GPa: implication for melting in Earth’s deep interior,” Earth Planet. Sci. Lett. 345, 159–170 (2012).

    Article  Google Scholar 

  • V. Yu. Litvin, T. Gasparik, and Yu. A. Litvin, “The enstatite–nepheline system in experiments at 6.5–13.5 GPa: an importance of Na2Mg2Si2O7 for melting of the nepheline-normative mantle,” Geochem. Int. 38 (1), 100–107 (2000).

    Google Scholar 

  • Yu. A. Litvin, Physicochemical Studies of Melting in the Earth’s Interior (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  • Yu. A. Litvin, “Mantle hot spots and experiment up to 10 GPa: alkaline reactions, carbonation of lithosphere, and new diamond-forming systems,” Geol. Geofiz. 39 (12), 1772–1779 (1998).

    Google Scholar 

  • Yu. A. Litvin, “High-pressure mineralogy of diamond genesis,” in Advances in High-Pressure Mineralogy Ed. by E. Ohtani, Geol. Soc. Am. Sp. Pap. 421, 83–103 (2007).

    Chapter  Google Scholar 

  • Yu. A. Litvin, “The physicochemical conditions of diamond formation in the mantle matter: experimental studies,” Russ. Geol. Geophys. 50 (12), 1188–1200 (2009).

    Article  Google Scholar 

  • Yu. A. Litvin, “Ultrabasic–basic differentiation of the mantle magmas and diamond-parental melts on evidence of physico-chemical experiments,” in 1st European Mineralogical Society Conference (Jointly with IMA), Frankfurt, Germany, 2012 (Frankfurt, 2012a).

    Google Scholar 

  • Yu. A. Litvin, “Ultrabasic–basic evolution of upper mantle magmas: petrogenetic links between diamond-bearing peridotites and eclogites (on evidence of physico-chemical experiment),” Geophys. Res. Abstr. 14, EGU2012-3610-1 (2012b).

    Google Scholar 

  • Yu. A. Litvin, “Physicochemical conditions of syngenesis of diamond and heterogeneous inclusions in carbonate–silicate parental melts (experimental studies),” Mineral. Zh. 35 (2), 5–24 (2013).

    Google Scholar 

  • Yu. A. Litvin, “The stishovite paradox in the genesis of superdeep diamonds,” Dokl. Earth Sci. 455 (1), 274–278 (2014).

    Article  Google Scholar 

  • Yu. A. Litvin, P. G. Vasil’ev, A. V. Bobrov, V. Yu. Okoemova, and A. V. Kuzyura, “Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment,” Geochem. Int. 50 (9), 726–759 (2012).

    Article  Google Scholar 

  • Yu. Litvin, A. Spivak, N. Solopova, and L. Dubrovinsky, “On origin of lower-mantle diamonds and their primary inclusions,” Phys. Earth Planet. Inter. 228, 176–185 (2014).

    Article  Google Scholar 

  • S. Maaloe Principles of Igneous Petrology (Springer, Berlin, 1985).

    Book  Google Scholar 

  • N. Nishiyama and T. Yagi, “Phase relation and mineral chemistry in pyrolite to 2200°C under the lower mantle pressures and implications for dynamics on mantle plumes,” J. Geophys. Res. 108 (B4), ECV 7–1–ECV 7–12 (2003).

    Google Scholar 

  • S. Ono E. Ito, and T. Katsura, “Mineralogy of subducted basaltic crust (MORB) from 25 and 37 GPa, and chemical heterogeneity of the lower mantle,” Earth Planet. Sci. Lett. 190, 57–63 (2001).

    Article  Google Scholar 

  • F. N. Rhines, Phase Diagrams in Metallurgy (New York: McGraw-Hill, 1956).

    Google Scholar 

  • A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  • T. Stachel, G. P. Brey, and J. W. Harris, “Inclusions in sublithospheric diamonds: glimpses of deep Earth,” Elements 1, 73–78 (2005).

    Article  Google Scholar 

  • O. Tschauner, C. Ma, J. R. Becket, C. Prescher, V. B. Prakapenka, and G. R. Rossman, “Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite,” Science 346 (6213), 1100–1102 (2014).

    Article  Google Scholar 

  • B. J. Wood, “Phase transformations and partitioning relations in peridotite under lower mantle conditions,” Earth Planet. Sci. Lett. 174, 341–354 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, A.V. Spivak, L.S. Dubrovinsky, 2016, published in Geokhimiya, 2016, No. 11, pp. 970–983.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Spivak, A.V. & Dubrovinsky, L.S. Magmatic evolution of the material of the Earth’s lower mantle: Stishovite paradox and origin of superdeep diamonds (Experiments at 24–26 GPa). Geochem. Int. 54, 936–947 (2016). https://doi.org/10.1134/S0016702916090032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916090032

Keywords

Navigation