Skip to main content
Log in

Distribution of structural impurities and fluid microinclusions in cubic and coated diamond crystals from the Udachnaya pipe, Yakutia, Russia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

FTIR microspectroscopic data were used to construct two-dimension maps showing the distribution of structural impurities and mineral microinclusions in cubic and coated octahedral diamond crystals from the Udachnaya kimberlite pipe in Yakutia. Elevated concentrations of hydrogen and total nitrogen are detected in parts corresponding to the early growth of single-episode growth regions of diamond crystals. These concentrations decrease toward the peripheral portions of these regions. The microinclusions contain water and polyphase mineral associations that preserve a high residual pressure. Microinclusions in the coats of octahedral diamond crystals are dominated by silicates, in which the intensity of IR spectral bands increases toward the peripheries, whereas the cubes posses irregularly distributed domains rich in these phases. The carbonate phases of the microinclusions are distributed according to growth zones of the crystals, and their distribution is often not correlated with the concentrations of structural impurities. The facts that microinclusions in the diamond cuboids are dominated by carbonates and that the rims of the octahedra are dominated by silicates suggest that the diamonds crystallized from dominantly carbonate and silicate fluids/ melts, respectively. The chemical composition of the microinclusions point to an eclogitic paragenesis of the crystals. Facts are obtained that provide support for the earlier hypothesis that cubic diamond crystals and coated octahedral crystals grow at metasomatic interaction between deep fluids and eclogitic rocks in the lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. Biellmann and Ph. Gillet, “High-pressure and hightemperature behaviour of calcite, aragonite and dolomite: a Raman spectroscopic study,” Eur. J. Mineral. 4, 389–393 1992.

    Article  Google Scholar 

  • S. R. Boyd, D. P. Mattey, C. T. Pillinger, H. J. Milledge, M. Mendelssohn, and M. Seal, “Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones,” Earth Planet. Sci. Lett. 86, 341–353 1987.

    Article  Google Scholar 

  • S. R. Boyd, I. Kiflawi, and G. S. Woods, “The relationship between infrared absorption and the A defect concentration in diamond,” Philos. Mag. B 69, 1149–1153 1994.

    Article  Google Scholar 

  • S. R. Boyd, I. Kiflawi, and G. S. Woods, “Infrared absorption by the B nitrogen aggregation in diamond,” Philos. Mag. B 72, 351–361 1995.

    Article  Google Scholar 

  • P. Cartigny, J. Harris, A. Taylor, R. Davies, and M. Javoy, “On the possibility of a kinetic fractionation of nitrogen stable isotopes during natural diamond growth,” Geochim. Cosmoch. Acta 67 (8), 1571–1576 2003.

    Article  Google Scholar 

  • R. M. Chrenko, R. S. McDonald, and K. A. Darrow, “Infra-red spectrum of diamond coat,” Nature 214, 474–476 1967.

    Article  Google Scholar 

  • F. de Weerdt, Y. N. Pal’yanov, and A. T. Collins, “Absorption spectra of hydrogen in 13C diamond produced by high-pressure, high-temperature synthesis,” J. Phys. Condens. Matter, No. 15, 3163–3170 2003.

    Article  Google Scholar 

  • T. Evans, “Aggregation of nitrogen in diamond,” in The Properties of Natural and Synthetic Diamond, Ed. by J. E. Field, (London, 1992), pp. 259–290.

    Google Scholar 

  • G. D. Guthrie, D. R. Veblen, O. Navon, and G. R. Rossman, “Submicrometer fluid inclusions in turbid-diamond coats,” Earth Planet. Sci. Lett. 105, 1–12 1991.

    Article  Google Scholar 

  • R. Jones, P. R. Briddon, and S. Oeberg, “First-principles theory of nitrogen aggregates in diamond,” Phil. Mag. Lett. 66, 67–74 1992.

    Article  Google Scholar 

  • O. Klein-BenDavid, R. Wirth, and O. Navon, “TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids,” Am. Mineral. 91, 353–365 2006.

    Article  Google Scholar 

  • Yu. A. Litvin, “Physicochemical conditions of syngenesis of diamond and heterogeneous inclusions in the carbonate–silicate parental melts (experimental study),” Mineral. Zh. Ukr. 35 (2), 5–23 2013.

    Google Scholar 

  • P. F. McMillan and Hofmeister, A. M. “Infrared and Raman spectroscopy,” in Spectroscopic Methods in Mineralogy and Geology, Ed. by F. C. Hawthorne, Rev. Mineral. 18, 99–160 1988.

    Google Scholar 

  • H. H. W. Moenke, “Silica, the three-dimensional silicates, borosilicates and beryllium silicates,” in The infrared spectra of minerals, Ed. by V. C. Farmer, (Mineral. Soc. London, London, 1974), pp. 365–382.

    Chapter  Google Scholar 

  • O. Navon, “Infrared determination of high internal pressures in diamond fluid inclusions,” Nature 353, 746–748 1991.

    Article  Google Scholar 

  • O. Navon, I. D. Hutcheon, G. R. Rossman, and G. J. Wasserburg, “Mantle-derived fluids in diamond microinclusions,” Nature 335, 784–789 1988.

    Article  Google Scholar 

  • O. Navon, E. S. Izraeli, and O. Klein-BenDavid, “Fluid inclusions in diamonds—the carbonatitic connection,” Extended abstracts 8th IKC, Victoria, Canada, 2003 (Victoria, 2003), FLA 0107.

  • Orlov, Yu. L. Bulienkov, N. A. and Martovitsky, V. P. “A study of the internal structure of variety III diamonds by X-ray section topography,” Phys. Chem. Miner. 8 (1), 105–111 1982.

  • Yu. N. Pal’yanov, A. G. Sokol, and N. V. Soboleva, “Experimental modeling of mantle diamond-forming processes,” Russ. Geol. Geophys. 46 (12), 1271–1284 2005.

    Google Scholar 

  • G. R. Rossman, “Vibrational spectroscopy of hydrous components,” Mineral. Soc. Am. Rev. Mineral. 18, 193–206 1988.

    Google Scholar 

  • E. V. Sobolev and V. I. Lisoivan, Nitrogen centers and growth of natural diamond crystals, in Petrological Problems of the Earth’s Crust and Upper Mantle (Nauka, Novosibirsk, 1978), pp. 245–255 [in Russian].

    Google Scholar 

  • V. S. Sobolev, “Conditions of formation of diamond deposits,” Geol. Geofiz., No. 1, 7–22 1960.

    Google Scholar 

  • Z. V. Spetsius, “Petrology of highly aluminous xenoliths from kimberlites of Yakutia,” Lithos 77, 525–538 2004.

    Article  Google Scholar 

  • Z. V. Spetsius and L. A. Taylor, “Partial melting in mantle eclogite xenoliths: Connections with diamond paragenesis,” Int. Geol. Rev. 44 (11), 973–987 2002.

    Article  Google Scholar 

  • Z. V. Spetsius, O. E. Kovalchuck, and I. N. Bogush, “Properties of diamonds in xenoliths from kimberlites of Yakutia: implication to their origin and exploration,” Long Abstracts 10th IKC, Bangalore, India, 2012 (Bangalore, 2012), FLA

    Google Scholar 

  • I. Sunagawa, “Growth and morphology of diamond crystals under stable and metastable conditions,” J. Crystal Growth 99, 1156–1161 1990.

    Article  Google Scholar 

  • S. V. Titkov, A. I. Gorshkov, Yu. P. Solodova, I. D. Ryabchikov, L. O. Magazina, A. V. Sivtsov, M. D. Gasanov, E. A. Sedova, and G. G. Samosorov, “Mineral microinclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy,” Dokl. Earth Sci. 410 (2), 1106–1108 2006.

  • P. T. T. Wong, F. L. Baudais, and D. J. Moffatt, “Hydrostatic- pressure effects on to-Lo splitting and softening of infrared active phonons in alpha-quartz,” J. Chem. Phys. 84 (2), 671–674 1986.

    Article  Google Scholar 

  • G. S. Woods, “Platelets and the infrared absorption of type Ia diamonds,” Proc. Royal Soc. London A 407, 219–238 1986.

    Article  Google Scholar 

  • A. M. Zaitsev, Optical Properties of Diamond: a Data Handbook (Springer Berlin–Heidelberg, 2001).

  • D. A. Zedgenizov, H. K. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic melts in cuboid diamonds from Udacnhaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68, 61–73 2004.

    Article  Google Scholar 

  • D. A. Zedgenizov, S. Rege, W. L. Griffin, H. Kagi, and V. S. Shatsky, “Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM–ICPMS analysis,” Chem. Geol. 240, 151–162 2007.

    Article  Google Scholar 

  • N. N. Zinchuk and V. I. Koptil, Typomorphism of Diamonds of the Siberian Platform (Nedra-Biznestsentr, Moscow, 2003) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Bogush.

Additional information

Original Russian Text © I.N. Bogush, Z.V. Spetsius, O.E. Koval’chuk, B.S. Pomazanskiy, 2016, published in Geokhimiya, 2016, No. 8, pp. 708–717.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogush, I.N., Spetsius, Z.V., Koval’chuk, O.E. et al. Distribution of structural impurities and fluid microinclusions in cubic and coated diamond crystals from the Udachnaya pipe, Yakutia, Russia. Geochem. Int. 54, 681–690 (2016). https://doi.org/10.1134/S0016702916080048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916080048

Keywords

Navigation