Skip to main content
Log in

Regional and local magmatic anomalies and tectonics of rift zones between the Antarctic and South American plates

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The study provides new understanding of magmatism at extinct and modern spreading zones around the western margin of East Antarctica from Bransfield Strait to the Bouvet Triple Junction (BTJ) in the Atlantic Ocean and reveals causes of geochemical heterogeneity of mantle magmatism during the early opening of the Southern Ocean. The results indicate the involvement of an enriched source component in the generation of parental melts, which was formed in several tectonic stages. The enriched (metasomatized) mantle generated at rift zones has geochemical characteristics typical of the western Gondwana lithosphere (with isotopic compositions similar to those inferred for the enriched HIMU and EM-2 sources). This mantle source may have been produced by the thermal erosion of the continental mantle during the early stages of the Karoo–Maud–Ferrar superplume activity. This enriched mantle generated in the apical parts of the plume (sub-oceanic) began to melt during tectonic displacement and fragmentation of Gondwana. The Bouvet Triple Junction, located along modern spreading zones between the Antarctic and South American plate, is characterized by a greater depth of melting and a higher degree of enrichment of primary tholeiitic magmas. The highest enrichment of magmas in this region is controlled by a contribution from a pyroxenite-rich component, which was also identified in the extinct spreading center in Powell Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. L. Barber, P. F. Barker, and R. J. Pankhurst, “Dredged rocks from Powell basin and the South Orkney microcontinent,” in Geological Evolution of the Antarctica, Ed. by R. A. Thomson, J. A. Crame, and J. W. Thomson (Cambridge University Press, Cambridge, 1991), pp. 361–367.

    Google Scholar 

  • P. F. Barker, “Scotia Sea regional tectonic evolution: implications for mantle,” Earth-Sci. Rev. 55, 1–39 (2001).

    Article  Google Scholar 

  • Z. Ben-Avraham, C. J. H. Hartnady, and A. P. Le Roex, “Neotectonic activity on continental fragments in the Southest Indian Ocean: Agulhas Plateau and Mozambique Ridge,” J. Geoph. Res. 100. (B4), 6199–6211 (1995).

    Article  Google Scholar 

  • B. V. Belyatsky, A. V. Antonov, N. A. Migdisova, R. Sh. Krymsky, E. N. Lepekhina, and N. M. Sushchevskaya, “Archean zircons from porphyritic basalt of the Shpiss Ridge, South Atlantic,” Petrology (in press).

  • P. R. Castillo, J. H. Natland, Y. Niu, and P. F. Lonsdale, “Sr, Nd and Pb isotopic variation along the Pacific- Antarctic rise crest, 53–57° S: implications for the composition and dynamics of the South Pacific upper mantle,” Earth Planet. Sci. Lett. 154, 109–125 (1998).

    Article  Google Scholar 

  • M. Catalan, J. Galindo-Zaldivar, J. Davila, Y. Martos, A. Maldonado, L. Gamboa, and A. Schreider, “Initial stages of oceanic spreading in the Bransfield Rift from magnetic and gravity data analysis,” Tectonophysics 585, 102–112 (2013).

    Article  Google Scholar 

  • D. Civile, E. Lodolo, A. Vuan, and M. F. Loreto, “Tectonics of the Scotia–Antarctica plate boundary constrained from seismic and seismological data,” Tectonophysics 550–553, 17–34 (2012).

    Article  Google Scholar 

  • F. Coren, G. Geccone, E. Lodolo, C. Zanolla, N. Zitellini, C. Bonazzi, and J. Centonze, “Morphology, seismic structure and tectonic development of the Powell Basin, Antarctica,” J. Geol. Soc. London 154, 849–862 (1997).

    Article  Google Scholar 

  • E. P. Dubinin, A. L. Grokholysky, A. V. Kokhan, E. S. Kurbatova, N. M. Sushchevskaya, and D. E. Teterin, “Riftogenic basins of the Scotia Sea,” in Life of the Earth, Ed. by V. A. Sadovnichii and G. V. Smurov (Mosk. Gos. Univ., Moscow, 2014), Vol. 35–36, pp. 102–103.

    Google Scholar 

  • E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokholysky, “Evolution of the South Atlantic spreading ridge and spatiotemporal position of the Bouvet triple junction,” Ross. Zh. Nauk. Zemle 1 (5), 423–435(1999).

    Google Scholar 

  • R. P. Dziak, M. Park, W. S. Lee, H. Matsumoto, D. R. Bohnenstiehl, and J. H. Haxel, “Tectonomagmatic activity and ice dynamics in the Bransfield Strait back arc basin, Antarctica,” J. Geophys. Res. 115, (B01102) (2010). doi 10.1029/2009JB006295

    Google Scholar 

  • G. Eagles and R. A. Livermore, “Opening history of Powell Basin, Antarctic Peninsula,” Marine Geol. 185, 195–205 (2002).

    Article  Google Scholar 

  • G. Eagles, “The age and origin of the central Scotia Sea,” Geophys. J. Int. 183 (2), 587–600 (2010).

    Article  Google Scholar 

  • G. Eagles, R. Livermore, and P. Morris, “Small basins in the Scotia Sea: the Eocene Drake Passage gateway,” Earth Planet Sci. Lett. 242, 343–353 (2006).

    Article  Google Scholar 

  • S. Fretzdorff, T. J. Worthington, K. M. Haase, R. Hekinian, L. F. Randall, A. Keller, and P. Stoffers, “Magmatism in the Bransfield Basin: rifting of the South Shetland Arc,” J. Geophys. Res. 109, B12208 (2004). doi 10.1029/2004JB003046

    Article  Google Scholar 

  • J. Galindo-Zaldívar, L. Gamboa, A. Maldonado, et al. “Tectonic development of the Bransfield Basin and its prolongation to the South Scotia Ridge, northern Antarctic Peninsula,” Marine Geol. 206, 267–282 (2004).

    Article  Google Scholar 

  • K. Gohl, F.-O. Nitsche, E. Weigelt, et al. “Tectonic and sedimentary architecture of the Bellingshausen and Amundsen Sea Basins, SE Pacific, by seismic profiling” The Antarctic Region: Geological Evolution and Processes (terra Antarctica, Siena, 1997), pp. 719–720.

    Google Scholar 

  • K. M. Haase, C. Beier, S. Fretzdorff, P. T. Leat, R. A. Livermore, T. L. Barry, J. A. Pearce, and F. Hauff, “Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage,” Chem. Geol. 280, 115–125 (2011).

    Article  Google Scholar 

  • S. R. Hart, J. Blusztajn, W. E. LeMasurier, and D. C. Rex, “Hobbs Coast Cenozoic volcanism: implications for the West Antarctic rift system,” Chem. Geol. 139, 223–248 (1997).

    Article  Google Scholar 

  • E. H. Hauri, J. A. Whitehead, and S. R. Hart, “Fluid dynamic and geochemical aspects of entrainment in mantle plumes,” J. Geophys. Res. 99, 24275–24300 (1994).

    Article  Google Scholar 

  • M. J. Hole, P. D. Kempton, and I. L. Millar, “Trace-element and isotopic characteristics of small-degree melts of the asthenpsphere: evidence from the alkalic basalts of the Antarctic Peninsula,” Chem. Geol. 109, 51–68 (1993).

    Article  Google Scholar 

  • M. J. Hole, G. Rogers, A. D. Saunders, and M. Storey, “The relationship between alkalic volcanism and slabwindow formation,” Geology 19, 657–660 (1991).

    Article  Google Scholar 

  • P. E. Janney, A. P. Le Roex, and R. W. Carson, “Hafnium isotopy and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13° E to 47° E),” J. Petrol. 46 (12), 2427–2464 (2005).

    Article  Google Scholar 

  • R. A. Keller, M. R. Fisk, W. M. White, and K. Birkenmajer, “Isotopic and trace element constraints on mixing and melting models of marginal basin volcanism, Bransfield Strait, Antarctica,” Earth Planet. Sci. Lett. 111, 287–303 (1991).

    Article  Google Scholar 

  • E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res. 92 (B4), 8089–8115 (1987).

    Article  Google Scholar 

  • R. Sh. Krymsky, N. M. Sushchevskaya, B. V. Belyatsky, and N. A. Migdisova, “Peculiarities of the osmium isotopic composition of basaltic glass from the western termination of the southwest Indian Ridge,” Dokl. Earth Sci. 428 (7), 1126–1130 (2009).

    Article  Google Scholar 

  • N. A. Kurentsova, T. I. Frolova, G. B. Udintsev, and I. A. Roshchina, “Rock material from the Weddell Sea floor of the South Ocean,” Russ. J. Pac. Geol. 26 (5), 435–443 (2007).

    Article  Google Scholar 

  • M. D. Kurz, A. P. LeRoex, and H. B. Dick, “Isotope geochemistry of the oceanic mantle near the Bouvet triple junction,” Geochim. Cosmochim. Acta 62 (5), 841–852 (1998).

    Article  Google Scholar 

  • A. P. Le Roex, H. J. B. Dick, and R. T. Watkins, “Petrogenesis of anomalous K-enriched MORB from the Southwest Indian ridge: 11°53' E to 14°38' E,” Contrib. Mineral. Petrol. 110, 253–268 (1992).

    Article  Google Scholar 

  • A. P. Le Roex, H. Dick, A. M. Reid, F. A. Frey, and A. J. Erlank, “Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume,” Contrib. Mineral. Petrol. 90, 367–380 (1985).

    Article  Google Scholar 

  • E. Lodolo, D. Civile, A. Vuan, et al. “The Scotia–Antarctica plate boundary from 35°W to 45°W,” Earth Planet. Sci. Lett. 293, 200–215 (2010).

    Article  Google Scholar 

  • A. K. Martin, “Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback,” Tectonophysics 445, 245–272 (2007).

    Article  Google Scholar 

  • W. G. Melson, G. R. Byerly, J. A. Helen, T. O’Hearn, T. L. Write, and T. A. Vallier, “Catalog of the major element chemistry of abyssal volcanic glasses,” Smithson. Contrib. Earth Sci., No. 19, (1977).

  • N. A. Migdisova, A. V. Sobolev, and N. M. Susuchevskaya, “Compositional variations of olivines and melts of tholeiitic basalts of the Bouvet segment in the Shpiss Ridhe area (SWIR, MAR)” Electron.-Nauchn. Zh. Vestn. Otd. Nauk Zemle RAN 1 (26) (2008). Inform. Bull. URL: http://wwwscgisru/russian/cp1251/ h_dgggms/1–2008/informbul-1_2008/term-27e. pdf.

    Google Scholar 

  • N. A. Migdisova, and A. V. Sobolev, “Assessment of primary melts of enriched tholeiites from the Bouvet triple junction using modern geochemical methods,” in InterRidge Workshop, Moscow, Russia, 2011 (Moscow, 2011) pp. 48–50.

    Google Scholar 

  • N. A. Migdisova, Candidate’s Dissertation in Geology and Mineralogy (GEOKhI, Moscow, 2012) [in Russian].

    Google Scholar 

  • A. I. Shemenda, and A. L. Grokholsky, “Geodynamics of the Southern Antilles,” Geotektonika, No. 1, 84–95 (1986).

    Google Scholar 

  • R. Smalley, Jr., I. W. D. Dalziel, M. G. Bevis, E. Kendrick, D. S. Stamps, E. C. King, F. W. Taylor, E. Lauría, A. Zakrajsek, and H. Parra, “Scotia arc kinematics from GPS geodesy,” Geophys. Res. Lett. 34. (2007). doi 10.1029/2007GL0319

    Google Scholar 

  • A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S. L. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, A. A. Matvienkov, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316 (5823), 412–417 (2007).

    Article  Google Scholar 

  • A. Stracke, A. W. Hofmann, and S. R. Hart “FOZO, HIMU, and the rest of the mantle zoo,” Geochem., Geophys., Geosyst. 6 (5), (2005).

    Google Scholar 

  • S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Sp. Publ. 42, 313–345 (1989).

    Google Scholar 

  • N. M. Sushchevskaya, and T. I. Tsekhonya, “Features of the formation of basaltic magmatism in the near-equatorial zone of the Mid-Atlantic Ridge,” Geokhimiya, No. 5, 102–118 (1994).

    Google Scholar 

  • N. M. Sushchevskaya, B. V. Belyatskii, E. P. Dubinin, T. I. Tsekhonya, E. M. Mikhal’skii, and G. L. Leichenkov, “Geochemical heterogeneity of tholeiitic magmatism in Circum-Antarctic Rift zones,” Geochem. Int. 41 (8) 727–740 (2003).

    Google Scholar 

  • N. M. Sushchevskaya, E. V. Koptev-Dvornikov, A. A. Peive, D. M. Khvorov, B. V. Belyatsky, V. S. Kamenetsky, N. A. Migdisova, and S. G. Skolotnev, “Peculiarities of crystallization and geochemisytry of tholeiitic magmas from the western termination of the Africa–Antarctic Ridge Shpiss Ridge) in the Bouvet triple junction,” Ross. Zh. Nauk Zemle 1 (3), 221–250 (1999). http://eos. wdcbrssiru/rjes/rjes_roohtm

    Google Scholar 

  • N. M. Sushchevskaya, G. A. Cherkashov, B. V. Baranov, K. Tomaki, H. Sato, H. Nguyen, B. V. Belyatsky, and T. I. Tsekhonya, “Tholeiitic magmatism of an ultraslow spreading environment: an example from the Knipovich Ridge, North Atlantic,” Geochem. Int. 43 (3), 222–241 (2005).

    Google Scholar 

  • N. M. Sushchevskaya, G. B. Udintsev, B. V. Belyatskii, and T. I. Tsekhonya, “Magmatism in the central part of the Bransfield Strait spreading zone, Southern Ocean,” Geochem. Int. 40 (6) 551–563 (2002).

    Google Scholar 

  • N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatsky, and A. A. Peyve, “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean,” Geochem. Int. 41 (1), 3–20 (2003a).

    Google Scholar 

  • N. M. Sushchevskaya, T. I. Tsekhonya, and A. A. Peive, “Distinctive features of magmatic processes in the Mid-Atlantic, Southwest Indian, and North Weddell ridges,” Geochem. Int. 36 (3), 209–221 (1998).

    Google Scholar 

  • N. M. Sushchevskaya, V. S. Kamenetsky, B. V. Belyatsky, and A. V. Artamonov, “Geochemical Evolution of Indian Ocean Basaltic Magmatism,” Geochem. Int. 51 (8) 663–689 (2013).

    Article  Google Scholar 

  • D. E. Teterin, E. P. Dubinin, G. B. Udintsev, A. V. Kol’tsova, and L. G. Domaratskaya, “Major tectonic elements of the Scotia plate,” Oceanology 35 (2), 236–244 (2015).

    Article  Google Scholar 

  • G. B. Udintsev A. F. Bersenev, N. A. Kurentsova et al., “Drake passage and Scotia sea—oceanic gate of Western Antarctica,” in Structure and Evolution of Lithosphere. A Contribution of Russia in the Interlational Polar Year (Paulsen, Moscow, 2010), Vol. 4, pp. 66–90 (in Russian).

  • G. B. Udintsev and G. V. Shencke, Essays on Geodynamics of Western Antarctica (GEOS, Moscow, 2004) [in Russian].

    Google Scholar 

  • Volcanic of the Antarctic Plate and Southern Oceans, Antarctic Research Ser. 48, Ed. by W. Le Masuirie (American Geophysical Union. Washington, 1990).

  • A. Zeh and A. Gerdes, “HFSE (High Field Strength Elements)- transport and U–Pb–Hf isotope homogenization mediated by Ca-bearing aqueous fluids at 2.04 Ga: constraints from zircon, monazite, and garnet of the Venetia Klippe, Limpopo Belt, South Africa,” Geochim. Cosmochim. Acta 138, 81–100 (2014).

    Article  Google Scholar 

  • A. Zindler and S. Hart, “Chemical geodynamics,” Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Migdisova.

Additional information

Original Russian Text © N.M. Sushchevskaya, N.A. Migdisova, E.P. Dubinin, B.V. Belyatsky, 2016, published in Geokhimiya, 2016, No. 6, pp. 505–521.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Migdisova, N.A., Dubinin, E.P. et al. Regional and local magmatic anomalies and tectonics of rift zones between the Antarctic and South American plates. Geochem. Int. 54, 494–508 (2016). https://doi.org/10.1134/S0016702916050104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916050104

Keywords

Navigation