Skip to main content
Log in

Geochemistry of major and rare earth elements in garnet of the Kal-e Kafi skarn, Anarak Area, Central Iran: Constraints on processes in a hydrothermal system

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Grossular-andradite (grandite) garnets, precipitated from hydrothermal solutions is associated with contact metamorphism in the Kal-e Kafi skarn show complex oscillatory chemical zonation. These skarn garnets preserve the records of the temporal evolution of contact metasomatism. According to microscopic studies and microprobe analysis profiles, the studied garnet has two distinct parts: the intermediate (granditic) composition birefringent core that its andradite content based on microprobe analysis varies between 0.68–0.7. This part is superimposed with more andraditic composition, and the isotropic rim which its andradite content regarding microprobe analysis ranges between 0.83–0.99. Garnets in the studied sample are small (0.5–2 mm in diameter) and show complex oscillatory zoning. Electron microprobe analyses of the oscillatory zoning in grandite garnet of the Kal-e Kafi area showed a fluctuation in chemical composition. The grandite garnets normally display core with intermediate composition with oscillatory Fe-rich zones at the rim. Detailed study of oscillatory zoning in grandite garnet from Kal-e Kafi area suggests that the garnet has developed during early metasomatism involving monzonite to monzodiorite granitoid body intrusion into the Anarak schist- marble interlayers. During this metasomatic event, Al, Fe, and Si in the fluid have reacted with Ca in carbonate rocks to form grandite garnet. The first step of garnet growth has been coeval with intrusion of the Kal-e Kafi granitoid into the Anarak schist- marble interlayers. In this period of garnet growth, change in fluid composition may cause the garnet to stop growing temporarily or keep growing but in a much slower rate allowing Al to precipitate rather than Fe. The next step consists of pervasive infiltration of Fe rich fluids and Fe rich grandite garnets formation as the rim of previously formed more Al rich garnets. Oscillatory zoning in the garnet probably reflects an oscillatory change in the fluid composition which may be internally and/or externally controlled. The rare earth elements study of these garnets revealed enrichment in light REEs (LREE) with a maximum at Pr and Nd and a negative to no Eu anomaly. This pattern is resulted from the uptake of REE out of hydrothermal fluids by growing crystals of calcsilicate minerals principally andradite with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet x site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Ahmadian, H. Michael, I. McDonald, M. Regelous, M. R. Ghorbani, and M. Murata, “High magmatic flux during Alpine–Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran,” Geol. Soc. Am. Bull. 121, 857–868 (2009).

    Article  Google Scholar 

  • M. Akizuki, H. Nakai, and T. Suzuki, “Origin of iridescence in grandite garnets,” Am. Mineral. 69, 896–901 (1984).

    Google Scholar 

  • D. H. M. Alderton, J.A. Pearce, and P.J. Potts, “Rare earth element mobility during granite alteration: evidence from southwest England,” Earth Planet. Sci. Lett. 49, 149–165 (1980).

    Article  Google Scholar 

  • Z. Bao and Z. Zhao, “Rare-earth element mobility during ore-forming hydrothermal alteration: a case study of Dongping gold deposit, Hebei Province, China,” Chin. J. Geochem 22, 45–47 (2003).

    Article  Google Scholar 

  • M. Bau, “Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium,” Chem. Geol. 93, 219–230 (1991).

    Article  Google Scholar 

  • H. J. Bernhardt, H. J. Massonne, T. Reinecke, J. Reinhardt, and A. Willner, “Digital element distribution maps, an aid in pathological investigations. (Berichte der Deutschen Mineralogischen Gesellschaft), Beihefte zum European,” J. Mineral. 7, 28 (1995).

    Google Scholar 

  • F. P. Bierlein, “Rare-earth element geochemistry of clastic and chemical metasedimentary rocks associated with hydrothermal sulphide mineralisation in the Olary Block, South Australia,” Chem. Geol. 122, 77–98 (1995).

    Article  Google Scholar 

  • M. J. Caddick, J. Konopasek, and A. B. Thompson, “Preservation of garnet growth zoning and the duration of prograde metamorphism,” J. Petrol. 51, 2327–2347 (2010).

    Article  Google Scholar 

  • I. H. Campbell, C. M. Lesher, P. Coad, J. M. Franklin, M. P. Gerton, and P. C. Thurston, “Rare earth element mobility in alteration pipes below massive Cu–Zn-sulfide deposits,” Chem. Geol. 45, 181–202 (1984).

    Article  Google Scholar 

  • C. C. Clechenko and J. W. Walley, “Oscillatory zoning in garnet from the Willsboro Wollastonite Skarn, Adirondack Mts, New York: a record of shallow hydrothermal processes preserved in a granulite facies terrane,” J. Metamorph. Geol. 21, 771–784 (2003).

    Article  Google Scholar 

  • G. T. R. Droop, “A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometries criteria,” Mineral. Mag. 51, 431–435 (1987).

    Article  Google Scholar 

  • A. K. Dziggel, Wulff, J. Kolb, F. M. Meyer, and Y. Lahaye, “Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: evidence from the Navachab gold deposit, Namibia,” Chem. Geol. 262, 262–276 (2009).

    Article  Google Scholar 

  • M. T. Einaudi, L. D. Meinert, and R. J. Newberry, “Skarn deposits,” Econ. Geol., 75th Anniversary Volume, 317–391 (1981).

    Google Scholar 

  • H. C. J. Elderfield, Hawkesworth, M. J. Greaves, and S. E. Calvert, “Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments,” Geochem. Cosmochim. Acta 45, 513–528 (1981).

    Article  Google Scholar 

  • A. J. Fleet, Aqueous and sedimentary geochemistry of the rare earth elements, in Rare Earth Element Geochemistry Ed. by P. Henderson, (Elsevier, Amsterdam, 1984), pp. 343–374.

    Chapter  Google Scholar 

  • R. L. García-Casco, A. Torres-Roldán, G. Millán, P. Monié, and J. Schneider, “Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: a record of tectonic instability during subduction,” J. Metamorph. Geol. 20, 581–598 (2002).

    Article  Google Scholar 

  • M. C. Gaspar, L. D. Knaack Meinert, and R. Moretti, “REE in skarn system: A LA-ICP-MS study of garnet from the Crown Jewel gold deposit,” Geochim. Cosmochim. Acta 72, 185–205 (2008).

    Article  Google Scholar 

  • Geological Map of Kabudan: Geological Survey of Iran, 1:100000 Series, Sheet 68. 1: 250000,” (Technoexport, 1984), No. H7.

  • R. Giere, “Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE,” Contrib. Mineral. Petrol. 93, 459–470 (1986).

    Article  Google Scholar 

  • E. D. Goldberg, M. Koide, R.A. Schmitt, and R.H. Smith, “Rare-earth distributions in the marine environment,” J. Geophys. 68, 4209–4217 (1963).

    Article  Google Scholar 

  • M. A. Gouveia, M. I. Prudencio, M. O. Figtueiredo, L. C. J. Pereira, J. C. Waermborgh, I. Morgado, T. Pena, and A. Lopes, “Behavior of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal,” Chem. Geol. 107, 293–296 (1993).

    Article  Google Scholar 

  • C. S. Haase, J. Chadam, D. Feinn, and P. Ortoleva, “Oscillatory zoning in plagioclase feldspar,” Science 209, 272–274 (1980).

    Article  Google Scholar 

  • J. R. Haas, E. L. Shock, and D. C. Sassani, “Rare earthelements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures,” Geochim. Cosmochim. Acta 59, 4329–4350 (1995).

    Article  Google Scholar 

  • L. A. Haskin, Petrogenetic modeling use of rare earth elements, in Rare-Earth Element Geochemistry Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 115–152.

    Chapter  Google Scholar 

  • J. L. Heurex and A. D. Fowler, “A non-linear model of oscillatory zoning in plagioclase,” Am. Mineral. 79, 885–891 (1994).

    Google Scholar 

  • H. Hirai, S. Sueno, and H. Nakazawa, “A lamellar texture with chemical contrast in grandite garnet from Nevada,” Am. Mineral. 67, 1242–1247 (1982).

    Google Scholar 

  • H. Hirai and H. Nakazawa, “Origin of iridescence in garnet: an optical interference study,” Phys. Chem. Mineral. 8, 25–28 (1982).

    Article  Google Scholar 

  • H. Hirai and H. Nakazawa, “Grandite garnet from Nevada: confirmation of origin of iridescence by electron microscopy and interpretation of a moire-like texture,” Am. Mineral. 71, 123–126 (1986a).

    Google Scholar 

  • H. Hirai and H. Nakazawa, “Visualizing low symmetry of a grandite garnet on precession photographs,” Am. Mineral. 71, 1210–1213 (1986b).

    Google Scholar 

  • T. Holten, B. Jamtveit, P. Meakin, M. Cortini, J. Blundy, and H. Austrheim, “Statistical characterization and origin of oscillatory zoning in crystals,” Am. Mineral. 82, 596–606 (1997).

    Article  Google Scholar 

  • T. Holten, B. Jamtveit, and P. Meakin, “Noise and oscillatory zoning of minerals,” Geochim. Cosmochim. Acta 64, 1893–1904 (2000).

    Article  Google Scholar 

  • S. E. Humphris, “The mobility of the rare earth elements in crust,” in Rare-Earth Element Geochemistry Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 317–342.

    Chapter  Google Scholar 

  • S. T. Intayot Thansasuthipitak, and P. Thansasuthipitak, “The oscillatory zoning in grandite garnet from Khao PhuKha, Lop Buri, Central Thailand,” Chiang Mai J. Sci. 34, 65–71 (2007).

    Google Scholar 

  • T. I. Ivanova, A. G. Shtukenberg, O. Yu. Punin, O. V. Frank-Kamenetskaya, and P. B. Sokolov, “On the complex zonality in grandite garnets and implications,” Mineral. Mag. 62, 857–868 (1998).

    Article  Google Scholar 

  • B. Jamtveit, “Oscillatory zonation in hydrothermal grossular andradite garnet: Non-linear dynamics in region of immiscibility,” Am. Mineral. 76, 1319–1327 (1991).

    Google Scholar 

  • B. Jamtveit and T. Andersen, “Morphological instabilities during rapid growth of metamorphic garnets,” Phys. Chem. Mineral. 19, 176–184 (1992).

    Article  Google Scholar 

  • B. Jamtveit, R. A. Wogelius, and D. G. Fraser, “Zonation patterns of skarn garnets: records of hydrothermal system evolution,” Geology 21, 113–116 (1993).

    Article  Google Scholar 

  • B. Jamtveit and R. L. Hervig, “Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals,” Science 263, 505–508 (1994).

    Article  Google Scholar 

  • B. Jamtveit, K. V. Ragnarsdottir, and B. J. Wood, “On the origin of zoned grossular–andradite garnets in hydrothermal systems,” Eur. J. Mineral. 7, 1339–1410 (1995).

    Article  Google Scholar 

  • N. F. Jansson and R. L. Allen, “Timing and setting of skarn and iron oxide formation at the Smältarmossen calcic iron skarn deposit, Bergslagen, Sweden,” Miner. Deposita 48, 313–339 (2013).

    Article  Google Scholar 

  • Y. Kato, “Rare earth elements as an indicator to origins of skarn deposits: examples of the Kamioka Zn-Pb and Yoshiwara-Sannotake Cu (-Fe) deposits in Japan,” Resou. Geol. 49, 183–198 (1999).

    Article  Google Scholar 

  • T. A. P. Kwak, W. M. Brown, P. B. Abeysinghe, and T. H. Tan, “Fe solubilities in very saline hydrothermal fluids: their relation tozoning in some ore deposits,” Econ. Geol. 81, 447–465 (1986).

    Article  Google Scholar 

  • C. G. Lee and W. W. Atkinson, “Geochemistry of zoned garnets from the San Pedro Mine, Santa Fe County, New Mexico,” N. M. Geol. 7, 69–74 (1985).

    Google Scholar 

  • P. Lessing and R. P Standish., “Zoned garnet from Crested Butte, Colorado,” Am. Mineral. 58, 840–842 (1973).

    Google Scholar 

  • Q. Ling and C. Liu, “Geochemical behaviors of REE and other Wace elements during the formation of stratabound skarns and related deposits: a case study of the Dongguashan Cu (Au) Deposit, Anhui Province, China,” Acta Geol. Sin. 77, 246–257 (2003).

    Google Scholar 

  • Y. G. Liu, M. R. U. Miah, and R. A. Schmitt, “Cerium: a chemical tracer for paleo-oceanic redox conditions,” Geochim. Cosmochim. Acta 52, 1361–1371 (1988).

    Article  Google Scholar 

  • B. G. Lottermoser, “Rare-earth elements and hydrothermal ore formation processes,” Ore Geol. Rev. 7, 25–41 (1992).

    Article  Google Scholar 

  • J. S. Marsh, “REE fractionation and Ce anomalies in weathered Karoo doleritie,” Chem. Geol. 90, 189–194 (1991).

    Article  Google Scholar 

  • H. J Massonne., “Formation of amphibole and clinozoisite-epidote during exhumation of eclogite in a subduction channel,” J. Petrol. 53, 2115–2138 (2012).

    Article  Google Scholar 

  • A. Masuda, N. Nakamura, and T. Tanaka, “Fine structures of mutually normalized rare-earth patterns of chondrites,” Geochim. Cosmochim. Acta 37, 239–248 (1973).

    Article  Google Scholar 

  • A. Masuda, “Abundances of monoisotopic REE, consistent with the Leedey chondrite values,” Geochem. J. 9, 183–184 (1975).

    Article  Google Scholar 

  • A. Masuda and Y. Ikeuchi, “Lanthanide tetrad effect observed in marine environment,” Geochem. J. 13, 19–22 (1979).

    Article  Google Scholar 

  • E.P. Meagher, “Silicate garnets,” in Orthosilicates, Ed. by P. H. Ribbe, Rev. Mineral 5, 25–66 (1982).

    Google Scholar 

  • L.D. Meinert, “Skarns and skarn deposits,” Geosci. Can. 19,145–162 (1992).

    Google Scholar 

  • L. D. Meinert, “Application of skarn deposit zonation models to mineral exploration,” Explor. Min. Geol. 6, 185–208 (1997).

    Google Scholar 

  • G. Mongelli, “REE and other trace elements in a granitic weathering profile from “Serre”, Southern Italy,” Chem. Geol. 103, 17–25 (1993).

    Article  Google Scholar 

  • E. Murad, “Zoned, birefringent garnets from Thera Island, Santorini Group (Aegean Sea),” Mineral. Mag. 40, 715–971 (1976).

    Article  Google Scholar 

  • T. Nakano, H. Takahara, and N. Norimasa, “Intracrystalline distribution of major elements in zoned garnet from skarn in the Chichibu mine, central Japan; illustration by color-coded maps,” Can. Mineral. 27, 499–507 (1989).

    Google Scholar 

  • H. W. Nesbitt, “Mobility and fractionation of rare-earth elements during weathering of a granodiorite,” Nature 279, 206–210 (1979).

    Article  Google Scholar 

  • P. Ortoleva, E. Merino, C. Moore, and J. Chadam, “Geochemical self-organization 1: Reaction-transport feedback sand modeling approach,” Am. J. Sci. 287,979–1007 (1987).

    Article  Google Scholar 

  • J. M. Parr, “Rare-earth element distribution in exhalites associated with Broken Hill-type mineralization at the Pinnacles deposit, New South Wales, Australia,” Chem. Geol. 100, 73–91 (1992).

    Article  Google Scholar 

  • Y. Perfiliev, L. Aistov, and E. Selivanov, “Geology and minerals of Khur area (central Iran), Report 3,” (V/O Technoexport, Moscow, 1979).

    Google Scholar 

  • D. Z. Piper, “Rare earth elements in the sedimentary cycle: a summary,” Chem. Geol. 14, 285–304 (1974).

    Article  Google Scholar 

  • M. I. Prudencio, M. S. A. Braga, and M. A. Gouveia, “REE mobilization, fractionation and precipitation during weathering of basalts,” Chem. Geol. 107, 251–254 (1993).

    Article  Google Scholar 

  • R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides,” Acta Crystall. (A) 32, 751–767 (1976).

    Article  Google Scholar 

  • M. Shore and A. D. Fowler, “Oscillatory zoning in minerals: a common phenomenon,” Can. Mineral. 34, 1111–1126 (1996).

    Google Scholar 

  • M. P. Smith, P. Henderson, T. E. R. Jeffries, J. Long, and C. T. Williams, “The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system,” J. Petrol. 45, 457–484 (2004).

    Article  Google Scholar 

  • F. S. Spear, “Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths,” (Mineralogical Society of America, Washington, D.C, 1993).

    Google Scholar 

  • B. E. Taylor and J. R. O’Neil, “Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada,” Contrib. Mineral. Petrol. 63, 1–49 (1977).

    Article  Google Scholar 

  • B. E. Taylor and J. G. Liou, “The low-temperature stability of andradite in C–O–H fluids,” Am. Mineral. 63, 378–393 (1978).

    Google Scholar 

  • R. P. Taylor and B. J. Fryer, “Multi-stage hydrothermal alteration in porpphyry copper systems in northern Turkey: the temporal interplay of potassic, porphylitie and phyllic fluids,” Can. J. Earth Sci. 17, 901–926 (1980).

    Article  Google Scholar 

  • R.P. Taylor and B.J. Fryer, “Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits,” in Metallization Associated with Acid Magmatism, Ed. by A. M. Evans (Wiley, New York, 1982), pp. 357–365.

    Google Scholar 

  • C. H. Van der Weijden, and R. D. Van der Weijden, “Mobility of major, minor and some redox-sensitive trace elements and rare earth elements during weathering of four granitoids in central Portugal,” Chem. Geol. 125, 149–168 (1995).

    Article  Google Scholar 

  • D. J. Whifford, M. L. Korsch, P. M. Porritt, and S. J. Craven, “Rare-earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia,” Chem. Geol. 68, 105–119 (1988).

    Article  Google Scholar 

  • P. R. Whitney and J. F. Olmsted, “Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA,” Geochim. Cosmochim. Acta 62, 2965–2977 (1998).

    Article  Google Scholar 

  • D. L. Whitney and B. W. Evans, “Abbreviations for names of rock forming minerals,” Am. Mineral. 95 (1), 185–187 (2010).

    Article  Google Scholar 

  • S. A. Wood, “The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure,” Chem. Geol. 88, 99–125 (1990).

    Article  Google Scholar 

  • S. A. Wood and A. E. Williams-Jones, “The aqueous geochemistry of the rare-earth elements and yttrium. 4. Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments,” Chem. Geol. 115, 47–60 (1994).

    Article  Google Scholar 

  • B. W. D. Yardley, C. A. Rochelle, A. C. Barnicoat, and G. E. Lioyd, “Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism,” Mineral. Mag. 55, 357–365 (1991).

    Article  Google Scholar 

  • V. Yakovenko, I. Chinakov, Yu. Kokorin, and B. Krivyakin, “Report on Geological Prospecting in Anarak Area (Kal-e Kafi-Khuni Locality),” (V/O Technoexport, Moscow, 1981), No. 13.

    Google Scholar 

  • Z. Zhang and S. K. Saxena, “Thermodynamic properties of andradite and application to skarn with coexisting andradite and hedenbergite,” Contrib. Mineral. Petrol. 107, 255–263 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Tabatabaei Manesh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, S., Tabatabaei Manesh, S.M., Mackizadeh, M.A. et al. Geochemistry of major and rare earth elements in garnet of the Kal-e Kafi skarn, Anarak Area, Central Iran: Constraints on processes in a hydrothermal system. Geochem. Int. 54, 423–438 (2016). https://doi.org/10.1134/S0016702916050098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916050098

Keywords

Navigation