Skip to main content
Log in

Physicochemical parameters of crystallization differentiation and Fe–Ti ore-forming processes in the magmatic system of the Elet’ozero massif (Northern Karelia)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The rocks of the Elet’ozero intrusion are characterized by high relative abundances of incompatible elements, with (La/Lu) N varying from 2.1 to 36.6, and a distinct positive Ba anomaly, which may record crystallization of Ba minerals during the formation of mafic rocks. The anomalous Ba enrichment is probably associated with a large-scale fluid-mediated mass transfer during subduction of a lithospheric slab within the Karelian craton which was synchronous with the generation of magmas parental to the Elet’ozero pluton. The presence of Al-rich spinel in gabbroic rocks as early-formed magmatic phases suggests crystallization at relatively high pressures (~0.5 GPa or ~15 km depth). The oxygen fugacity changed with time during the evolution of the magmatic system, approaching its maximum values (approximately 1.5 log units above the quartz–fayalite–magnetite buffer) during extensive crystallization of Fe–Тi oxides. High oxygen fugacities, Ti enrichment of mafic rocks, and lack of any positive correlation between Mg-numbers and Ni content in olivine can be useful indicators of potentially mineralized mafic intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Babu, K. V. Kumar, and D. M. Pyle, “Spinel (hercynite) adcumulate from the Chimakurti gabbro-anorthosite pluton, Prakasam District, Andhra Pradesh, India: evidence for plagioclase buoyancy and magma mixing,” Current Sci. 73, 441–444 (1997).

    Google Scholar 

  • C. Ballhaus, “Redox states of lithospheric and asthenospheric upper mantle,” Contrib. Mineral. Petrol. 114, 341–348 (1993).

    Google Scholar 

  • K. Bell, “Carbonatites: relationship to mantle-plume activity,” in Mantle Plumes: their Identification through Time, Ed. by R. E. Ernst and K. L. Buchan, Geol. Soc. Am. Sp. Pap. 352, 267–290 (2001).

    Google Scholar 

  • R. G. Berman and L. A. Aranovich, “Optimized standard state and solution properties of minerals I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2,” Contrib. Mineral. Petrol. 126. 1–24 (1996).

    Article  Google Scholar 

  • R. G. Berman, “Internally consistent thermodynamic data for minerals in the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2,” J. Petrol. 29, 445–522 (1988).

    Article  Google Scholar 

  • F. Corfu, T. Bayanova, V. Shchiptsov, and N. Frantz, “U-Pb ID-TIMS age of the Tikshozero carbonatite: expression of the 2.0 Ga alkaline magmatism in Karelia, Russia,” Centr. Eur. J. Geosci. 3, 302–308 (2011).

    Google Scholar 

  • I. Francisco Blanco-Quintero, C. Lazaro, A. Garcia- Casco, J. A. Proenza, and Y. Rojas-Agramonte, “Barium-rich fluids and melts in a subduction environment (La Corea and Sierra del Convento melanges, eastern Cuba),” Contrib. Mineral. Petrol. 162, 395–413 (2011).

    Article  Google Scholar 

  • M. S. Ghiorso and R. O. Sack, “Fe–Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive parameters in silicic magmas,” Contrib. Mineral. Petrol. 108, 485–510 (1991).

    Article  Google Scholar 

  • A. V. Girnis, “Olivine–orthopyroxene–melt equilibrium as a thermobarometer for mantle-derived magmas,” Petrology 11, 101–113 (2003).

    Google Scholar 

  • A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” in Treatise on Geochemistry, Ed. by R. W. Carlson, (Elsevier, Amsterdam, 2003), Vol. 2, pp. 61–101.

    Google Scholar 

  • T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  • T. J. B. Holland, “Activities of components in omphacitic solid solutions. Application of Landau theory to mixtures,” Contrib. Mineral. Petrol. 105, 446–453 (1990).

    Article  Google Scholar 

  • N. Kärkkäinen and H. Appelqvist, “Genesis of a low-grade apatite–ilmenite–magnetite deposit in the Kauhajärvi Gabbro, western Finland,” Miner. Deposita 34, 754–769 (1999).

    Article  Google Scholar 

  • P. B. Kelemen, K. Hanghøj, and A. R. Greene, “One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust,” in Treatise on Geochemistry. Volume 3. Crust, 2nd Ed. Ed. by R. W. Carlson, (Elsevier, Amsterdam, 2014), pp. 749–805.

    Chapter  Google Scholar 

  • L. N. Kogarko, V. A. Kononova, M. P. Orlova, and A. R. Woolley, Alkaline Rocks and Carbonatites of the World: Part 2. Former USSR, (Chapman and Hall, London, 1995).

    Book  Google Scholar 

  • L. N. Kogarko, I. D. Ryabchikov, and D. V. Kuzmin, “High-Ba mica in olivinites of the Guli Massif (Maimecha- Kotui province, Siberia),” Russ. Geol. Geophys. 53, 1209–1215 (2012).

    Article  Google Scholar 

  • L. N. Kogarko, Y. A. Uvarova, E. Sokolova, F. C. Hawthorne, L. Ottolini, and J. D. Grice, “Oxykinoshitalite, a new species of mica from Fernando de Noronha Island, Pernambuco, Brazil: occurrence and crystal structure,” Can. Mineral. 43, 1501–1510 (2005).

    Article  Google Scholar 

  • T. P. Köhler and G. P. Brey, “Calcium exchange between olivine and clinopyroxene calibrated as geothermobarometer for natural peridotites from 2 to 60 kb with applications,” Geochim. Cosmochim. Acta 54, 2375–2388 (1990).

    Article  Google Scholar 

  • A. A. Kukharenko, A. G. Bulakh, G. A. Il’insky, N. F. Shinkarev, and M. P. Orlova, Metallogenic Features of Alkaline Rock Associations of the Eastern Baltic Shield (Nedra, Leningrad, 1971) [in Russian].

    Google Scholar 

  • P. P. Liu, M. F. Zhou, D. P. Yan, G. C. Zhao, S. G. Su, and X. L. Wang, “The Shangzhuang Fe-Ti oxide-bearing layered mafic intrusion, northeast of Beijing (North China): implications for the mantle source of the giant Late Mesozoic magmatic event in the North China Craton,” Lithos 231, 1–15 (2015).

    Article  Google Scholar 

  • J. Lupton, K. H. Rubin, R. Arculus, M. Lilley, D. Butterfield, J. Resing, E. Baker, and R. Embley, “Helium isotope, C/He-3, and Ba–Nb–Ti signatures in the northern Lau Basin: distinguishing arc, back-arc, and hotspot affinities,” Geochem. Geophys. Geosyst. 16, 1133–1155 (2015).

    Article  Google Scholar 

  • H. Palme and H. S. C. O’Neill, “Cosmochemical estimates of mantle composition,” in Treatise on Geochemistry. Volume 2. The Mantle and Core, 2nd Ed., Ed. by R. W. Carlson (Elsevier, Amsterdam, 2014), pp. 1–38.

    Chapter  Google Scholar 

  • P. Peltonen and G. Brügmann, “Origin of layered continental mantle (Karelian craton, Finland): geochemical and Re–Os isotope constraints,” Lithos 89, 405–423 (2006).

    Article  Google Scholar 

  • I. D. Ryabchikov, G. P. Orlova, V. I. Kovalenko, D. I. Chopororov, I. P. Solovova, and G. N. Muravitskaya, “Experimental study of interaction between fluid and micaceous spinel lherzolite under high temperatures and pressure,” Izv. Akad. Nauk SSSR, Ser. Geol. 38-46 (1983).

  • R. O. Sack and M. S. Ghiorso, “An internally consistent model for the thermodynamic properties of Fe–Mgtitanomagnetite-aluminate spinels,” Contrib. Mineral. Petrol. 106, 474–505 (1991).

    Article  Google Scholar 

  • E. V. Sharkov, B. V. Belyatsky, M. M. Bogina, A. V. Chistyakov, V. V. Shchiptsov, A. V. Antonov, and E. N. Lepekhina, “Genesis and age of zircon from alkali and mafic rocks of the Elet’ozero Complex, North Karelia,” Petrology 23, 259–280 (2015).

    Article  Google Scholar 

  • A. V. Stepanova, A. V. Samsonov, E. B. Salnikova, I. S. Puchtel, Yu. O. Larionova, A. N. Larionov, V. S. Stepanov, Y. B. Shapovalov, and S. V. Egorova “Palaeoproterozoic continental MORB-type tholeiites in the Karelian Craton: petrology, geochronology, and tectonic setting,” J. Petrol. 55, 1719–1751 (2014).

    Article  Google Scholar 

  • M. J. Toplis, “The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems,” Contrib. Mineral. Petrol. 149, 22–39 (2005).

    Article  Google Scholar 

  • B. J. Wood, L. T. Bryndzya, and K. E. Johnson, “Mantle oxidation state and its relationship to tectonic environment and fluid speciation,” Science 248, 337–345 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabchikov.

Additional information

Original Russian Text © I.D. Ryabchikov, L.N. Kogarko, 2016, published in Geokhimiya, 2016, No. 3, pp. 233–255.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabchikov, I.D., Kogarko, L.N. Physicochemical parameters of crystallization differentiation and Fe–Ti ore-forming processes in the magmatic system of the Elet’ozero massif (Northern Karelia). Geochem. Int. 54, 215–236 (2016). https://doi.org/10.1134/S0016702916030046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916030046

Keywords

Navigation