Skip to main content
Log in

Species and environmental geochemistry characteristics of organic phosphorus in sediments of a riverine wetland measured by 31P-NMR spectroscopy

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Phosphorus species in sediment cores obtained from a representative riverine wetland were determined and organic phosphorus was distinguished with phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. The concentrations and distributions of orthophosphate, orthophosphate monoester, orthophosphate diester and pyrophosphate were subsequently characterized. Total phosphorus, total inorganic phosphorus and total organic phosphorus decreased from the top to bottom layer of sediment on the whole. Organic phosphorus was primarily detected in surface sediment layers and scarce toward the bottom, and orthophosphate as a proportion of total organic phosphorus was much higher than other species which was attributed to mineralization as a result of high dissolved oxygen (DO) concentrations. Furthermore, significant positive correlation was observed between alkaline phosphatase activity (APA) and phosphorus fractions suggesting that APA could hydrolyze organic phosphorus into inorganic phosphorus even at high phosphorus concentrations. Significant correlation was also observed between Fe/Al and phosphorus species showed organic phosphorus adsorbed to Fe/Al might be released from sediments and transformed to inorganic phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Søndergaard, J. P. Jensen and E. Jeppesen, “Internal phosphorus loading in shallow Danish lakes,” Hydrobiologia 408–409, 145–152 (1999).

    Article  Google Scholar 

  2. D. Justi, N. N. Rabalais and R. E. Turner, “Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River DELTA,” ECOL. MODEL. 152, 33–46 (2002).

    Article  Google Scholar 

  3. K. Reitzel, J. FHansen, F. Ø. Andersen, et al., “Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment,” Environ. Sci. Technol. 39, 4134–4140 (2005).

    Article  Google Scholar 

  4. K. R. Reddy, Y. Wang, W. F. Debusk, et al., “Forms of soil phosphorus in selected hydrologic units of the Florida Everglades,” Soil Sci. Soc. Am. J. 62, 1134–1147 (1998).

    Article  Google Scholar 

  5. A. R. Aldous, C. B. Craft, C. J. Stevens, et al., “Soil phosphorus release from a restoration wetland, upper Klamath lake, Oregon,” Wetlands 27, 1025–1035 (2007).

    Article  Google Scholar 

  6. R. Y. Zhang, F. C. Wu, C. Q. Liu, et al., “Characteristics of organic phosphorus fractions in different trophic csediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China,” Environ. Pollut. 152, 366–372 (2008).

    Article  Google Scholar 

  7. N. Ekeroth, M. Lindström, S. Blomqvist and P. O. J. Hall, “Recolonisation by macrobenthos mobilises organic phosphorus from reoxidised baltic sea sediments,” Aquat. Geochem. 18, 499–513 (2012).

    Article  Google Scholar 

  8. M. M. Fisher and K. P. Reddy, “Estimating the stability of organic phosphorus in wetland soils,” Soil Sci. Soc. Am. J. 74, 1398–1405 (2010).

    Article  Google Scholar 

  9. B. L. Turner, S. Newman, and J. M. Newman, “Organic Phosphorus Sequestration in Subtropical Treatment Wetlands,” Environ. Sci. Technol. 40, 727–33 (2006).

    Article  Google Scholar 

  10. J. Ahlgren, K. Reitzel, R. Danielsson and A. Gogoll, “Biogenic phosphorus in oligotrophic mountain lake sediments: Differences in composition measured with NMR spectroscopy,” Water Res. 40, 3705–3712 (2006).

    Article  Google Scholar 

  11. A. R.Gar ia and A. F. De Iorio, “Phosphorus distribution in sediments of Morales Stream (tributary of the Matanza–Riachuelo River, Argentina). The influence of organic point source contamination,” Hydrobiologia 492, 129–138 (2003).

    Article  Google Scholar 

  12. E. M. Bostic and J. R. White, “Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought,” Soil Sci. Soc. Am. J. 71, 238–244 (2008).

    Article  Google Scholar 

  13. X. C. Jin, S. R. Wang, J. Z. Chu and F. C. Wu, “Organic phosphorus in shallow lake sediments in middle and lower reaches of the Yangtze River area in China,” Pedosphere 18, 394–400 (2008).

    Article  Google Scholar 

  14. Z. D. Wang, J. X. Yao, S. Li, et al., “Spatial status and retention potential of phosphorus in riparian wetlands of the Southern Taihu Basin, China,” Wetlands 30, 149–157 (2010).

    Article  Google Scholar 

  15. M. Hupfer, S. Glöss, P.Schmieder and H. Grossart, “Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments,” Int. Rev. Hydrobiol. 93, 11–30 (2008).

    Google Scholar 

  16. J. Ahlgren, L. Tranvik, A. Gogoll, et al., “Sediment depth attenuation of biogenic phosphorus compounds Measured by 31P NMR”. Environ. Sci. Technol. 39, 867–872 (2005).

    Article  Google Scholar 

  17. B. L. Turner, S. Newman And K. R. Reddy, “Phosphorus in wetland soils by alkaline extraction and molybdate colorimetry,” Environ. Sci. Technol. 40, 3349–3354 (2006).

    Article  Google Scholar 

  18. R. H. Newman And K. R. Tate, “Soil phosphorus characterization by 31P nuclear magnetic resonance,” Commun. Soil Sci. Plan. 11, 835–842 (1980).

    Article  Google Scholar 

  19. R. Carman, G. Edlund and C. Damberg, “Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study,” Chem. Geol. 163, 101–114 (2000).

    Article  Google Scholar 

  20. M. Hupfer and J. Lewandowski, “Oxygen controls the phosphorus release from lake sediments–a long–lasting paradigm in limnology,” Int. Rev. Hydrobiol. 93, 415–432 (2008).

    Article  Google Scholar 

  21. M. Hupfer, B. Rübe and P. Schmieder, “Origin and diagenesis of polyphosphate in lake sediments: A 31P–NMR study,” Limnol. Oceanogr. 49, 1–10 (2004).

    Article  Google Scholar 

  22. R. W. Mcdowell and I. Stewart, “An improved technique for the determination of organic phosphorus in sediments and soils by 31P nuclear magnetic resonance spectroscopy,” Chem. Ecol. 21, 11–22 (2005).

    Article  Google Scholar 

  23. F. S. Wei and T. Q. Qi, “Methods for the Examination of Water and Wastewater, 4th edn,” (China Environmental Science Press, Beijing, 2002) [In Chinese].

    Google Scholar 

  24. V. Ruban, J. F. López–Sánchez, P. Pardo, et al., “Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments–a synthesis of recent works,” Fresen. J. Anal. Chem. 370, 224–228 (2001).

    Article  Google Scholar 

  25. P. Pardo, G. Rauret And J. F. López–Sánchez, “Shortened screening method for phosphorus fractionation in sediments A complementary approach to the standards, measurements and testing harmonised protocol,” Anal. Chim. Acta 508, 201–206 (2004).

    Article  Google Scholar 

  26. B. J. Cade–Menun and C. M. Preston, “A comparison of soil extraction procedures for 31P–NMR spectroscopy,” Soil Sci. 161, 770–785 (1996).

    Article  Google Scholar 

  27. S. Newman And K. R. Reddy, “Alkaline phosphatase activity in the sediment–water column of a hypereutrophic Lake,” J. Environ. Qual. 22, 832–838 (1993).

    Article  Google Scholar 

  28. Ministry of Environmental Protection of the People’s Republic of China (Mepc), “Environmental Quality Standard for Surface Water,” (In Chinese) (2002).

    Google Scholar 

  29. R. A. Vollenweider And J. J. Kerekes, “Background and summary results of the OECD cooperative program on eutrophication,” in Proceedings of an International Symposium on Inland Waters and Lake Restoration, (US Environmental Protection Agency, Washington, 1980), No. 440/5–81–010, pp. 26–36.

    Google Scholar 

  30. J. Ahlgren, H. De Brabandere, K. Reitzel, et al., “Sediment phosphorus extractants for phosphorus-31 nuclear magnetic resonance analysis: a quantitative evaluation,” J. Environ. Qual. 36, 892–898 (2007).

    Article  Google Scholar 

  31. X. L. Bai, S. M. Ding, C. X. Fan, Et Al., “Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China,” Environ. Pollut. 157, 2507–2513 (2009).

    Article  Google Scholar 

  32. A. Möller, K. Kaiser, W. Amelung, et al., “Forms of organic C and P extracted from tropical soils as assessed by liquid–state 13Cand 31P-NMR spectroscopy,” Aust. J. Soil Res. 38, 1017–1036 (2000).

    Article  Google Scholar 

  33. B. L. Turner, R. Baxter, N. Mahieu, et al., “Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)–tundra ecotone,” Soil Biol. Biochem. 36, 815–823 (2004).

    Article  Google Scholar 

  34. C. M. Preston and J. A. Trofymow, “Characterization of soil P in coastal forest chronosequences of southern Vancouver Island: effects of climate and harvesting disturbance,” Can. J. Soil Sci. 80, 633–647 (2000).

    Article  Google Scholar 

  35. B. J. Cade–Menun, S. M. Berch, M. Preston and L. M. Lavkulich, “Phosphorus forms and related soil chemistry of podzolic soils on northern Vancouver Island. I. A comparison of two forest types,” Can. J. Forest Res. 30, 1714–1725 (2000).

    Article  Google Scholar 

  36. I. M. Cardoso, P. Van Der Meer, O. Oenema, and B. H. Janssen, et al., “Analysis of phosphorus by 31PNMR in Oxisols under agroforestry and conventional coffee systems in Brazil,” Geoderma 112, 51–70 (2003).

    Article  Google Scholar 

  37. B. L. Turner, S. Newman, and J. M. Newman, “Estimating the stability of organic phosphorus in wetland soils,” Soil Sci. Soc. Am. J. 74, 1398–1405 (2010).

    Article  Google Scholar 

  38. E. Rejmánková and P. Macek, “Response of root and sediment phosphatase activity to increased nutrients and salinity,” Biogeochemistry 90, 159–169 (2008).

    Article  Google Scholar 

  39. B. H. Hill, C. M. Elonen, T. M. Jicha, Bolgrien, et al., “Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River basin,” Biogeochemistry 97, 195–209 (2010).

    Article  Google Scholar 

  40. E. Litchman And B. L. V. Nguyen, “Alkaline phosphatase activity as a function of internal phosphorus concentration in freshwater phytoplankton,” J. Phycol. 44, 1379–1383 (2008).

    Article  Google Scholar 

  41. M. J. Boavida And R. T. Heath, “Are the phosphatases released by Daphnia magna components of its food?” Limnol. Oceanogr. 29, 641–645 (1984).

    Article  Google Scholar 

  42. C. Labry, D. Delmas and A. Herbland, “Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters Bay of Biscay,” J. Exp. Mar. Biol. Ecol. 318, 213–225 (2005).

    Article  Google Scholar 

  43. T. X. Zhang, X. R. Wang and X. C. Jin, “Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu),” Environ. Pollut. 150, 288–294 (2007).

    Article  Google Scholar 

  44. M. S. Koch, D. C. Kletou and R. Tursi, “Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay,” Estuar. Coas. Shelf S. 83, 403–414 (2009).

    Article  Google Scholar 

  45. V. Ruban, J. F. López-Sánchez, P. Pardo, and G. Rauret, “Characterisation, validation and comparison of three methods for the extraction of phosphate from sediments,” Anal. Chim. Acta 376, 183–195 (1998).

    Article  Google Scholar 

  46. P. Banaszuk and A. Wysocka-Czubaszek, “Phosphorus dynamics and fluxes in a lowland river: The Narew Anastomosing River System, NE Poland,” Ecol. Eng. 25, 429–441 (2005).

    Article  Google Scholar 

  47. O. G. Olila and K. R. Reddy, “Influence of redox potential on phosphate–uptake by sediments in two sub–tropical eutrophic lakes,” Hydrobiologia 345, 45–57 (1997).

    Article  Google Scholar 

  48. J. Riggle And R. V. Wndruszka, “Binding of inorganic phosphate to dissolved metal humates,” Talanta 66, 372–375 (2005).

    Article  Google Scholar 

  49. J. R. Gerke and R. Hcrmann, “Adsorption of orthophosphale to humic–Fe complexes and to amorphous Fe–oxide,” J. Plant Nutr. Soil Sci. 155, 233–236 (1992).

    Google Scholar 

  50. C. Paludan and H. S. Jensen, “Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids,” Wetlands 15, 365–373 (1995).

    Article  Google Scholar 

  51. D. B. Livanoff, K. R. Reddy, and S. Robinson, “Chemical fractionation of organic phosphorus in selected histosols,” Soil Sci. 163, 36–45 (1998).

    Article  Google Scholar 

  52. H. Golterman, J. Paing, L. Serrano, and E. Gomez, “Presence of and phosphate release from polyphosphates or phytate phosphate in lake sediments,” Hydrobiologia 364, 99–104 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezhong Yuan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Pan, W., Shen, J. et al. Species and environmental geochemistry characteristics of organic phosphorus in sediments of a riverine wetland measured by 31P-NMR spectroscopy. Geochem. Int. 53, 1141–1149 (2015). https://doi.org/10.1134/S0016702915120058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915120058

Keywords

Navigation