Skip to main content
Log in

The nature of xenoliths in the Novaya Melovatka intrusion, Voronezh Crystalline Massif

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents petrographic and petrochemical data on metaterrigenous (comparable with rocks of the Vorontsovka Group) and metamamatic ultramafic–mafic xenoliths in the Paleoproterozoic Novaya Melovatka intrusion in the Voronezh Crystalline Massif (VCM). The intrusion was drilled through by Voronezh Stratigraphic Borehole at Site 3210 of Geotraverse 1-EV. The concordant U-Pb zircon age of a gabbrodiorite xenolith is 2138 ± 25 Ma, and a rock of this age has no analogues among any other magmatic complexes in the geological legend currently adopted for VCM. The younger zircon age value of 2052 ± 22 Ma is thought to be explained by the thermal effect of the Novaya Melovatka intrusion, which was emplaced at 2049 ± 10 to 2057 ± 12 Ma. Xenoliths from this intrusion and from norite of the Elan’ Complex are petrochemically similar to one another and comparable with oceanic-type rocks (cumulus and differentiated mafic–ultramafic series). According to circumstantial evidence, the former were emplaced at relatively shallow depths of 20–30 km in the middle and lower Paleoproterozoic crust, whereas the latter were intruded into the mantle at a depth of 40–50 km, which suggests that the Voronezh block of VCM contains no Archean continental crustal component. The paper reports dada on differences between the Ni-bearing and metallogenically barren mafic–ultramafic massifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. V. Akinin, E. L. Miller, and J. L. Wooden, “Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust,” Geol. Soc. Am., Sp. Pap. 456, 39–68 (2009).

    Google Scholar 

  • S. Arai “Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation,” Chem. Geol. 113, 191–204 (1994).

    Article  Google Scholar 

  • S. Arai, “Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry,” Mineral. Mag. 56, 173–184 (1992).

    Article  Google Scholar 

  • L. P. Black, S. L. Kamo, C. M. Allen, J. N. Aleinikoff, D. W. Davis, R. J. Korsch, C. Foudoulis, “TEMORA1: a new zircon standard for Phanerozoic U–Pb geochronology,” Chem. Geol. 200, 155–170 (2003).

    Article  Google Scholar 

  • V. L. Bocharov, S. M. Frolov, and N. M. Chernyshov, “Structure and composition of the Elan Ni-bearing pluton on the periphery of the Voronezh crystalline massif. Paper 1. Geology and geophysics,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 4, 10–19 (1986a).

  • V. L. Bocharov, S. M. Frolov, and N. M. Chernyshov, “Structure and composition of the Elan Ni-bearing pluton on the periphery of the Voronezh crystalline massif. Paper II. Petrochemistry,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 5, 42–48 (1986b).

  • D. S. Chapman, “Thermal gradients in the continental crust,” in The Nature of the Lower Continental Crust, Ed. by J. B. Dawson, D. A. Carswell, J. Hall, K. H. Wedepohl, Geol. Soc. Spec. Publ. 24, 63-70 (1986).

    Google Scholar 

  • N. M. Chernyshov and A. V. Pereslavtsev, “The role of accumulation in forming the nickeliferous vorite-diorite intrusions of the Voronezh Crystalline Massif,” Int. Geol. Rev. 36, 587–604 (1994).

    Article  Google Scholar 

  • N. M. Chernyshov, Sulfide Copper–Nickel Deposits of the Southeastern Voronezh Crystalline Massif (Voronezh, 1971) [in Russian].

    Google Scholar 

  • N. M. Chernyshov, A. N. Ponomarenko, and A. B. Bartnitskii, “New data on the age of nickel-bearing differentiated plutons of the VCM,” Dokl. Akad. Nauk USSR. Ser. B. Geol. Khim. Biol Nauki, No. 6, 35–41 (1990).

    Google Scholar 

  • K. C. Condie, Plate Tectonics and Crustal Evolution 4th Edition. (Butterworth Heinemann, Bath, 1997).

    Google Scholar 

  • V. A. Ermakov and V. A. Pecherksii, “Nature of gabbroid enclaves from young lavas of the Kurile Islands,” Tikhookean. Geol., No. 4, 45–55 (1989).

    Google Scholar 

  • A. V. Girnis, A. N. Plaksenko, I. D. Ryabchikov, and P. Suddaby, “Geochemical features of ultramafic xenoliths from norite intrusions of the Voronezh crystalline massif,” Geokhimiya, No. 4, 451–460 (1991).

    Google Scholar 

  • V. A. Glebovitsky, L. P. Nikitina, V. Ya. Khiltova, and N. O. Ovchinnikov, “The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry data of mantle xenoliths,” Lithos 74, 1–26 (2004).

    Article  Google Scholar 

  • C. J. Hawkesworth and A. I. S. Kemp, “Evolution of the continental crust,” Nature 443, 811–817 (2006).

    Article  Google Scholar 

  • C. T. Herzberg, “Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO–MgO—Al2O3–SiO2,” Geochim. Cosmochim. Acta 42, 945–958 (1978).

    Article  Google Scholar 

  • G. L. Kashintsev and D. M. Pecherskii, “Estimation of gabbro role in the magnetization of oceanic crust: evidence from xenoliths in the Afar basaltic lavas, Ethopia,” Fiz. Zemli, No. 9, 101–110 (1983).

    Google Scholar 

  • P. D. Kempton and R. S. Harmon, “Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating,” Geochim. Cosmochim. Acta 56, 971–986 (1992).

    Article  Google Scholar 

  • P. D. Kempton, H. Downes, and A. Embey-Isztin, “Mafic granulite xenoliths in Neogene alkali basalts from the western Pannonian Basin: insights into the lower crust of a collapsed orogen,” J. Petrol. 38 (7), 941–970 (1997).

    Article  Google Scholar 

  • S. Keshav, G. Sen, and D. C. Presnall, “Garnet-bearing xenoliths from Salt Lake crater, Oahu, Hawaii: highpressure fractional crystallization in the oceanic mantle,” J. Petrol. 48 (9), 1681–1724 (2007).

    Article  Google Scholar 

  • A. A. Kremenetskii, V. Yu. Skryabin, R. A. Terentiev, T. N. Polyakova, V. M. Nenakhov, G. S. Zolotareva, and A. N. Larionov, “Voronezh stratigraphic borehole—a new stage in knowledge of the deep structure of the Voronezh crystalline massif,” Razv. Okhr. Nedr, No. 9–10, 109–117 (2006).

    Google Scholar 

  • R. Kretz, “Symbols for rock-forming minerals,” Am. Mineral. 68, 277–279 (1983).

    Google Scholar 

  • I. P. Lebedev, S. P. Molotkov, I. I. Krivtsov, and V. I. Lositskii, “Structural–geological features of the Vorontsovka Group of the Voronezh crystalline massif (VCM),” Vestn. Voronezh. Univ. Ser. Geol., No. 7, 25–30 (1999).

    Google Scholar 

  • Y.-S. Liu, S. Gao, S.-Y. Jin, S.-H. Hu, M. Sun, Zu- B. Zhao, and J.-L. Feng, “Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton: implications for petrogenesis and lower crustal composition,” Geochim. Cosmochim. Acta 65 (15), 2589–2604 (2001).

    Article  Google Scholar 

  • K. R. Ludwig, “Isoplot/Ex ver. 3.6,” Berkeley Geochronol. Center. Spec. Publ., No. 4, (2008).

  • A. V. Lykov, A. V. Sholpo, and Yu. S. Genshaft, “Petromagnetic study of deep-seated rocks of Iceland,” Fiz. Zemli, No. 9, 53–67 (1992).

    Google Scholar 

  • W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).

    Article  Google Scholar 

  • M. V. Mints, I. B. Filippova, A. K. Suleimanov, N. G. Zamozhnyaya, P. S. Babayants, Yu. I. Blokh, and A. A. Trusov, “A volume model of the deep structure of the Ryazan–Saratov and East Voronezh collisional orogens (eastern Voronezh crystalline massif, East European Platform): profile 1-EV, 2450–3500 km,” in Model of the Earth’s Crust and Upper Mantle based on Results of Deep Seismic Profiling (VSEGEI, St. Petersburg, 2007), pp. 120–125 [in Russian].

    Google Scholar 

  • A. Miyashiro, “Volcanic rock series in island arcs and active continental margins,” Am. J. Sci. 274, 321–355 (1974).

    Article  Google Scholar 

  • H. S. O’Neill, “The transition between spinel lherzolite and garnet lherzolite,” Contrib. Mineral. Petrol. 77, 185–194 (1981).

    Article  Google Scholar 

  • J. A. Pearce, P. F. Barker, S. J. Edwards, I. J. Parkinson, and P. T. Leat, “Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic,” Contrib. Mineral. Petrol. 139, 36–53 (2000).

    Article  Google Scholar 

  • D. M. Pecherskii and Yu. S. Genshaft, “Petromagnetism of continental lithosphere and nature of regional magnetic anomalies: a review,:” Ross. Zh. Nauk Zemle 3 (2), (2001).

  • G. B. Piccardo, “Ophiolites,” in Plate tectonics: The first twenty-five years. Proceedings of 8th Summer School Earth and Planetary Sciences, Sienna, 1995 Ed. by G. Ranalli (Sienna, 1995), pp. 267–296.

    Google Scholar 

  • A. N. Plaksenko, “Chrome spinel in ultramafic xenoliths from norites in the Voronezh crystalline massif in relation with their genesis and ore potential,” Zap. Vsesoyuz. Mineral. O-va 119 (1) 23–35 (1990).

    Google Scholar 

  • A. N. Plaksenko, “Problem of genesis and ore potential of the Precambrian norite–diorite intrusions of the Voronezh crystalline massif,” Geol. Zh., No. 2, 35–44 (1992).

    Google Scholar 

  • A. N. Plaksenko, “Ultramafic xenoliths in the Precambrian norites of the Voronezh crystalline massif” Geol. Geofiz., No. 12, 57–66 (1991).

    Google Scholar 

  • R. L. Rudnick and D. M. Fountain, “Nature and composition of the continental crust: a lower crustal perspective,” Rev. Geophys. 33 (3), 267–309 (1995).

    Article  Google Scholar 

  • R. L. Rudnick and S. Gao, “Composition of the Continental Crust,” Treatise on Geochemistry 3, 1–64 (2003).

    Article  Google Scholar 

  • R. L. Rudnick, “Xenoliths—samples of the lower continental crust,” in Continental Lower Crust, Ed. by D. M. Fountain, R. Arculus and R. W. Kay, (Elsevier, Amsterdam), Development in Geotectonics 23, 269–316 (1992).

    Google Scholar 

  • R. L. Rudnick, S. Gao, W.-Li. Ling, Y.-S. Liu, and W. F. McDonough, “Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton,” Lithos 77, 609–637 (2004).

    Article  Google Scholar 

  • K. A. Savko, A. V. Samsonov, Yu. O. Larionova, V. V. Hiller, S. L. Votyakov, V. Yu. Skryabin, and E. N. Kozlova, “Granitoids of the eastern Voronezh crystalline massif: geochemistry, Th–U–Pb age, and petrogenesis,” Vestn. Voronezh. Univ. Ser. Geol., No. 2, 98–115 (2011).

    Google Scholar 

  • J. Selverstone and C. R. Stern, “Petrochemistry and recrystallization history of granulite xenoliths from the PaliAike volcanic field, Chile,” Am. Mineral. 68, 1102–1112 (1983).

    Google Scholar 

  • S. A. Silantyev, “Variations in the geochemical and isotopic characteristics of residual peridotites along the MidAtlantic Ridge as a function of the nature of the mantle magmatic sources,” Petrology 11 (4), 305–326 (2003).

    Google Scholar 

  • S. A. Silantyev, E. A. Krasnova, M. Cannat, N. S. Bortnikov, N. N. Kononkova, and V. E. Bel’teneva, “Peridotite–gabbro–trondhjemite association of the MidAtlantic Ridge between 12°58’ and–14°45’ N: Ashadze and Logachev hydrothermal vent fields,” Geochem. Int. 49 (4), 323–354 (2011).

    Article  Google Scholar 

  • S. V. Sobolev and A. Yu. Babeiko, “Calculation of phase equilibria and elastic properties of magmatic rocks,” Phys. Solid Earth 30 (11), 931–947 (1995).

    Google Scholar 

  • C. R. Stern, R. Kilian, B. Olker, E. H. Hauri, and T. K. Kyser, “Evidence from mantle xenoliths for relatively thin (<100 km) continental lithosphere below the Phanerozoic crust of southernmost South America,” Lithos 48, 217–235 (1999).

    Article  Google Scholar 

  • S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” J. Geol. Soc. London, Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  • S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific publication, Carlton, 1985).

    Google Scholar 

  • C. Villaseca, E. Ancochea, D. Oreajana, and T. E. Jeffries, “Composition and evolution of the lithospheric mantle in central Spain: inferences from peridotite xenoliths from the Cenozoic Calatrava volcanic field,” in Petrological Evolution of the European Lithospheric Mantle, Ed. by M. Coltorti, H. Downes, M. Gregoire, and S. Y. O’Reilly, Geol. Soc. London, Spec. Publ. 337, 125–151 (2010).

    Google Scholar 

  • M. E. Wallace and D. H. Green, “The effect of bulk compositions on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism,” Petrol. Mineral. 44, 1–9 (1991).

    Article  Google Scholar 

  • K. H. Wedepohl, “The composition of continental crust,” Geochim. Cosmochim. Acta 59 (7), 1217–1232 (1995).

    Article  Google Scholar 

  • D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  • U. Wiechert, D. A. Ionov, and K. H. Wedepohl, “Spinel peridotite xenoliths from Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle,” Contrib. Mineral. Petrol. 126, 345–364 (1997).

    Article  Google Scholar 

  • Y. Xiao, H.-F. Zhang, W.-M. Fan, Ji- F. Ying, J. Zhang, X.-M. Zhao, and B.-X. Su, “Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: evidence from petrology and geochemistry of peridotite xenoliths,” Lithos 117, 229–246 (2010).

    Article  Google Scholar 

  • Y. G. Xu and J.-L. Bodinier, “Contrasting enrichments in highand low-temperature mantle xenoliths from Nushan, Eastern China: results of a single metasomatic event during lithospheric accretion?” J. Petrol. 45 (2), 321–341 (2004).

    Article  Google Scholar 

  • X. S. Xu, S. Y. O’Reilly, W. L. Griffin, and X. M. Zhou, “The nature of the Cenozoic lithosphere at Nushan, Central Eastern China,” in Mantle Dynamics and Plate Interactions in East Asia, Ed. by M. Flower, S. L. Chung, C. H. Lo. and T. Y. Lee, Am. Geophys. Union Geodynam. Ser. 27, 167–195 (1998).

    Article  Google Scholar 

  • B. P. Zolotarev, A. V. Lykov, and D. M. Pecherskii, “Petromagnetic characteristics of gabbro xenoliths from the Miocene tuffs in Iceland,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 4, 27–38. (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Terentiev.

Additional information

Original Russian Text © R.A. Terentiev, 2015, published in Geokhimiya, 2015, No. 12, pp. 1069–1093.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terentiev, R.A. The nature of xenoliths in the Novaya Melovatka intrusion, Voronezh Crystalline Massif. Geochem. Int. 53, 1028–1051 (2015). https://doi.org/10.1134/S0016702915100067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915100067

Keywords

Navigation