Skip to main content
Log in

Devonian ore clastic turbidites of the Molodezhnoe massive copper sulfide deposit, Southern Urals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We present data on the composition of Devonian ore clastic sediments accumulated at the boundaries of the orebodies of the Molodezhnoe massive copper sulfide deposit, Southern Urals. They are interpreted to be accumulated during the synsedimentary and postsedimentary stages. The synsedimentary stage was marked by gravity transport and accumulation of products of the destruction of high-temperature black smoker chimneys. During the postsedimentary stage, the deposits underwent two types of mineralogical and geochemical transformation: (1) infiltration-metasomatic effects of ore-bearing solutions and infiltration effects of seawater causing redistribution of copper and carbonates in the sediments and formation of authigenic minerals (chalcopyrite, siderite, secondary calcite, and apatite and replacement of aluminosilicates by chlorite) and (2) dehydration accompanied by the replacement of iron hydroxides by hematite and amorphous silica by quartz. Temperatures of the postsedimentary alteration were estimated from a fluid inclusion study and thermodynamic computer modeling as 150–250°C and correspond to the metagenesis stage (burial metamorphism). The organic matter composition was characterized by TOC, hydrogen and oxygen indices (HI and OI), and δ13C values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. Augustin, K. S. Lackschewitz, T. Kuhn, and C. W. Devey, “Mineralogical and chemical mass changes in mafic and ultramafic rock from the Logachev hydrothermal field (MAR 15° N),” Marine Geol. 256, 18–29 (2008).

    Article  Google Scholar 

  • E. N. Baranov, Endogenic Geochemical Aureoles of Massive Sulfide Deposits (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  • V. Beltenev, V. Shilov, Y. Popova, and I. Rozhdestvenskaya, “Geochemical features of sediments at the hydrothermal fields of MAR 13° N,” in Materials of International Conference: Minerals of the Ocean-3. Future Developments (St. Petersburg, 2006), p. 28–29.

    Google Scholar 

  • V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, G. Cherkashov, T. Stepanova, V. Shilov, A. Pertsev, M. Davydov, I. Egorov, I. Melekestseva, E. Narkevsky, and V. Ignatov, “A new hydrothermal field at 13°30′ N on the Mid-Atlantic Ridge,” InterRidge News 16, 9–10 (2007).

    Google Scholar 

  • V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, G. Cherkashov, T. Stepanova, V. Shilov, M. Davydov, A. Laiba, V. Kaylio, E. Narkevsky, A. Pertsev, I. Dobretzova, A. Gustaytis, Ye. Popova, and C. Evrard, “New data about hydrothermal fields on the Mid-Atlantic Ridge between 11°–14° N: 32nd Cruise of R/V Professor Logachev,” Inter-Ridge News 18, 14–18 (2009a).

    Google Scholar 

  • V. Beltenev, V. Ivanov, I. Rozhdestvenskaya, G. Cherkashov, T. Stepanova, V. Shilov, A. Pertsev, M. Davydov, I. Egorov, I. Melekestseva, E. Narkevsky, and V. Ignatov, “New data about structure of hydrothermal fields in the area of 13°31′ N (Semyenov ore cluster),” in Materials of the XVIII School on Marine Geology “Geology of Seas and Oceans” (GEOS, Moscow, 2009b), Vol. 2, 133–136.

    Google Scholar 

  • S. B. Benjamin and R. M. Haymon, “Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific Rise: evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids,” Geochem., Geophys., Geosyst. 7 (2006). Q05002. doi:10.1029/2005GC001011.

    Article  Google Scholar 

  • M. Bentabol, M. D. R. Cruz, F. J. Huertas, and J. Linares, “Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal conditions,” Appl. Clay Sci. 32, 111–124 (2006).

    Article  Google Scholar 

  • A. G. Betekhtin, F. I. Vol’fson, A. N Zavaritsky, et al. Main Problems in the Theory of Magmatogenic Ore Deposits (Akad. Nauk SSSR, Moscow, 1953) [in Russian].

    Google Scholar 

  • W. P. Binney, “A sedimentological investigation of Maclean channel transported sulfide ores Buchans Geology, Newfoundland,” Ed. by R.V. Kirkham, Geol. Assoc. Can. Spec. Pap., No. 86-24, 107–147 (1987).

    Google Scholar 

  • M. B. Borodaevskaya, D. I. Gorzhevsky, A. I. Krivtsov, G. V. Ruchkin, N. S. Skripchenko, G. A. Tvalchrelidze, and G. F. Yakovlev, Massive Sulfide Deposits of the World (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  • W. S. Broecker, “A boundary condition on the evolution of atmospheric oxygen,” J. Geophys. Res. 75, 3553–3557 (1970).

    Article  Google Scholar 

  • T. G. Cole, “Oxygen isotope geochemistry and origin of smectites in the Atlantis II Deep, Red Sea,” Earth Planet. Sci. Lett. 66, 166–176 (1983).

    Article  Google Scholar 

  • T. G. Cole, “Composition, oxygen isotope geochemistry, and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific,” Geochim. Cosmochim. Acta 49, 221–235 (1985).

    Article  Google Scholar 

  • T. G. Cole, “The nature and origin of smectite in the Atlantis II Deep, Red Sea,” Can. Mineral. 26, 755–763 (1988).

    Google Scholar 

  • Copper Massive Sulfide Deposits of the Urals: Geological Structure, Ed. by V.A. Prokin, F.P. Buslaev, M.I. Ismagilov, et al. (Ural. Nauchn. Ts. Akad. Nauk SSSR, Sverdlovsk, 1988) [in Russian].

    Google Scholar 

  • Copper Massive Sulfide Deposits of the Urals: Conditions of Formation, Ed. by V.A. Prokin, I.B. Seravnik, F.P. Buslaev, et al. (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992) [in Russian].

    Google Scholar 

  • R. Davis and C. Moyer, “Extreme spatial and temporally variability of hydrothermal microbial mat communities along the Mariana island arc and southern Mariana backarc system,” J. Geophys. Res. 113(B08), S15 (2008).

    Google Scholar 

  • V. M. Dekov, G. D. Kamenov, J. Stummeyer, M. Thiry, C. Savelli, W. C. Shanks, D. Fortin, E. Kuzmann, and A. Vertes, “Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea),” Chem. Geol. 245, 103–119 (2007).

    Article  Google Scholar 

  • V. M. Dekov, J. Cuadros, W. C. Shanks, and R. A. Koski, “Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields: evidence from mineralogical, geochemical and oxygen isotope studies,” Chem. Geol. 247, 171–194 (2008).

    Article  Google Scholar 

  • A. L. Dergachev, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Moscow State University, Moscow, 2010).

    Google Scholar 

  • A. L. Dergachev, N. E. Sergeeva, and T. A. Felitsyna, “Ore clasts on the Nikolaevskoe massive sulfide-base metal deposit, Rudnyi Altai,” Geol. Rudn. Mestorozhd. 1, 89–95 (1986).

    Google Scholar 

  • A. Dhillon, A. Teske, J. Dillon, D. A. Stahl, and M. L. Sogin, “Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin,” Appl. Environ. Microbiol. 69, 2765–2772 (2003).

    Article  Google Scholar 

  • A. S. Dias and F. J. A. S. Barriga, “Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR,” Mar. Geol. 225, 157–175 (2006).

    Article  Google Scholar 

  • A. S. Dias, G. L. Frueh-Green, S. M. Bernasconi, F. J. A. S. Barriga, and Seahma Cruise Team, Charles Darwin 167 Cruise Team, “Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field,” Mar. Geol. 279, 128–140 (2011).

    Article  Google Scholar 

  • L. J. Duck, M. Glikson, S. D. Golding, and R. E. Webb, “Microbial remains and other carbonaceous forms from the 3.24 Ga Sulfur Springs black smoker deposit, Western Australia,” Precambrian Res. 154, 205–220 (2007).

    Article  Google Scholar 

  • D. Emerson, J. A. Rentz, T. G. Lilburn, R. E. Davis, H. Aldrich, C. Chan, and C. L. Moyer, “A novel lineage of proteobacteria involved in formation of marine Feoxidizing microbial mat communities,” PloS One 2(7), 667 (2007). doi:10.1371/journal.pone.0000667.

    Article  Google Scholar 

  • D. Emerson, E. J. Fleming, and J. M. McBeth, “Iron-oxidizing bacteria: an environmental and genomic perspective,” Annu. Rev. Microbiol. 64, 561–583 (2010).

    Article  Google Scholar 

  • E. M. Galimov, Geochemistry of Stable Carbon Isotopes (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  • E. M. Galimov, “The causes of the global variations of carbon isotopic composition in the biosphere,” Geochem. Int. 37(8), 699–714 (1999).

    Google Scholar 

  • Yu. O. Gavrilov, Diagenetic Transformations in Clay Deposits (Middle Miocene of Eastern Cis-Caucasus) (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  • E. G. Gurvich, Metalliferous Sediments of the Ocean (Nauchn. Mir, Moscow, 1998) [in Russian].

    Google Scholar 

  • S. Higashi, H. Miki, and S. Komarneni, “Mn-smectites: hydrothermal synthesis and characterization,” Appl. Clay Sci. 38, 104–112 (2007).

    Article  Google Scholar 

  • W. Hodges and J. B. Olson, “Molecular composition of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc,” Appl. Environ. Microbiol. 75, 1650–1657 (2009).

    Article  Google Scholar 

  • J. Hoefs, Stable Isotope Geochemistry, 2nd Ed. (Springer, New York, 1980).

    Book  Google Scholar 

  • E. Hrischeva and S. D. Scott, “Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge,” Geochim. Cosmochim. Acta 71, 3476–4397 (2007).

    Article  Google Scholar 

  • K. Iizasa, K. Kawasaki, K. Maeda, T. Matsumoto, N. Saito, and K. Hirai, “Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacific,” Mar. Geol. 145, 1–21 (1998).

    Article  Google Scholar 

  • R. Iler, The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  • M. B. Ivanov and A. Yu. Lein, “Distribution of microorganisms and their role in the diagenetic mineral formation,” in Geochemistry of the Diagenesis of Pacific Sediments (Pacific Profile) (Nauka, Moscow, 1980), p. 117–137 [in Russian].

    Google Scholar 

  • B. Köhler, A. Singer, and P. Stoffers, “Biogenic nontronite from marine white smoker chimneys,” Clays Clay Miner. 42, 689–701 (1994).

    Article  Google Scholar 

  • V. S. Karpukhina, V. B. Naumov, and I. V. Vikent’ev, “Genesis of massive sulfide deposits in the Verkhneural’sk Ore District, the South Urals, Russia: Evidence for magmatic contribution of metals and fluids,” Geol. Ore Dep. 55(2), 125–143 (2013).

    Article  Google Scholar 

  • S. Kato, C. Kobayashi, T. Kakegawa, and A. Yamagishi, “Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough,” Environ. Microbiol. 11, 2094–2111 (2009).

    Article  Google Scholar 

  • C. B. Kennedy, S. D. Scott, and F. G. Ferris, “Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean,” Geomicrobiol. J. 20, 199–214 (2003).

    Article  Google Scholar 

  • V. A. Koroteev, R. G. Yazeva, V. V. Bochkarev, V. P. Moloshag, A. V. Korovko, and Yu. S. Sheremet’ev, Geological Position and Composition of the Sulfide Ores of the Saf’yanovskoe Deposit (Middle Urals) (Inst. Geol. Geokhim. Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1997) [in Russian].

    Google Scholar 

  • K. S. Lackschewitz, R. Botz, D. Garbe-Schönberg, J. Scholten, and P. Stoffers, “Mineralogy and geochemistry of clay samples from active hydrothermal vents of the north coast of Iceland,” Mar. Geol. 225, 177–190 (2006).

    Article  Google Scholar 

  • S. Lantenois, R. Champallier, J.-M. Beny, and F. Muller, “Hydrothermal synthesis and characterization of dioctahedral smectites: a montmorillonites series,” Appl. Clay Sci. 38, 165–178 (2008).

    Article  Google Scholar 

  • N. V. Logvinenko and L. V. Orlova, Formation and Alteration of Sedimentary Rocks on Continent and in Ocean (Nedra, Leningrad, 1987) [in Russian].

    Google Scholar 

  • V. V. Maslennikov, Sedimentogenesis, Halmyrolysis, and Ecology of Sulfide Paleohydrothermal Fields by the Example of the South Urals (Geotur, Miass, 1999) [in Russian].

    Google Scholar 

  • V. V. Maslennikov, Lithogenesis and Formation of Massive Sulfide Deposits (Inst. Mineral. Ural. Otd. Ross. Akad. Nauk, Miass, 2006) [in Russian].

    Google Scholar 

  • V. V. Maslennikov and N. R. Ayupova, “Siliceous-ferruginous rocks of the Uzel’ga sulfide field (South Urals),” Litosfera 2, 106–129 (2007).

    Google Scholar 

  • V. V. Maslennikov, N. R. Ayupova, R. J. Herrington, L. V. Danyushevskiy, and R. R. Large, “Ferruginous and manganiferous haloes around massive sulfide deposits of the Urals,” Ore Geol. Rev. 47, 5–41 (2012).

    Article  Google Scholar 

  • D. K. Nordstorm, “Aqueous pyrite oxidation and the consequent formation of secondary minerals,” in Acid Sulphate Weathering: Pedogeochemistry and Relationship to Manipulation of Soil Materials, Ed. by J.A. Kitrick, D.S. Fanning, and L.R. Hossner (Soil Sci. Soc. Am., Madison, 1982), pp. 37–56.

    Google Scholar 

  • T. M. Pak and A. L. Dergachev, “Ore clasts of the Ridder-Sokol’noe massive sulfide-base metal deposit, Rudnyi Altai,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 1, 77–81 (1993).

    Google Scholar 

  • X. Peng, J. Li, H. Zhon, Z. Wu, J. Li, S. Chen, and H. Yao, “Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges,” J. Asian Earth Sci. 41, 355–368 (2011).

    Article  Google Scholar 

  • M. D. Rudnick and H. Elderfield, “A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge,” Geochim. Cosmochim. Acta 57, 2939–2957 (1993).

    Article  Google Scholar 

  • V. Yu. Rusakov, “Comparative analysis of the mineral and chemical compositions of black smoker smoke at the TAG and Broken Spur hydrothermal fields, Mid-Atlantic Ridge,” Geochem. Int. 45(7), 698–717 (2007).

    Article  Google Scholar 

  • V. Yu. Rusakov, V. V. Shilov, I. A. Roshchina, and N. N. Kononkova, “Accumulation history of the metalliferous and ore-bearing sediments of the Krasnov hydrothermal field (MAR 16°38′ N) for the past 80 ka BP: Part I.,” Geochem. Int. 49(12), 1208–1238 (2011).

    Article  Google Scholar 

  • V. Yu. Rusakov, T. G. Kuz’mina, I. A. Roshchina, and V. V. Shilov, “Accumulation history of the metalliferous and ore-bearing sediments of the Krasnov hydrothermal field (MAR 16°38′ N) for last 80 ka: Part II,” Geochem. Int. 50(3), 246–271 (2012).

    Article  Google Scholar 

  • V. Yu. Rusakov, V. V. Shilov, B. N. Ryzhenko. I. F. Gablina, I. A. Roshchina, T. G. Kuz’mina, N. N. Kononkova, and I. G. Dobretsova, “Mineralogical and geochemical zoning of sediments at the Semenov Cluster of hydrothermal fields, 13°31′-13°30′ N, Mid-Atlantic Ridge,” Geochem. Int. 51(8), 646–669 (2013).

    Article  Google Scholar 

  • N. P. Safina and V. V. Maslennikov, “Ore clastites of the Yaman-Kasy and Saf’yanovskoe massive sulfide deposits, Urals,” (Ural. Otd. Ross. Akad. Nauk, Miass, 2008) [in Russian].

    Google Scholar 

  • M. Schidlowski, P. W. U. Appel, R. Eichmann, and C. E. Junge, “Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implication for the Archean carbon and oxygen cycles,” Geochim. Cosmochim. Acta 43, 189–199 (1979).

    Article  Google Scholar 

  • N. S. Skripchenko, Hydrothermal-Sedimentary Sulfide Ores of Basaltoid Associations (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  • C. D. Spence, “Volcanogenic features of the Vauze sulfide deposit, Noranda, Quebec,” Econ. Geol. 70, 102–114 (1975).

    Article  Google Scholar 

  • E. V. Starikova, A. I. Brusnitsyn, and I. G. Zhukov, Paleohydrothermal Build-Up of the Kyzyl Tash Manganese Deposit, South Urals: Structure, Composition, and Genesis (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  • Z. Sun, H. Zhou, G. P. Glasby, Q. Yang, X. Yin, J. Li, and Z. Chen, “Formation of Fe-Mn-Si oxide and nontronite in hydrothermal fields on the Valu Fa Ridge, Lau Basin,” J. Asian Earth Sci. 43, 64–76 (2012).

    Article  Google Scholar 

  • N. Taitel-Goldman and A. Singer, “High-resolution transmission electron microscopy study of newly formed sediments in the Atlantis II Deep, Red Sea,” Clays Clay Miner. 49, 174–182 (2001a).

    Article  Google Scholar 

  • N. Taitel-Goldman and A. Singer, “Metastable Si-Fe phases in hydrothermal sediments of Atlantis II Deep, Red Sea,” Clay Miner. 37, 235–248 (2001b).

    Article  Google Scholar 

  • V. V. Zaikov and V. V. Maslennikov, “Near-bottom sulfide buildups on the sulfide deposits of the Urals,” Dokl. Akad. Nauk SSSR 293(1), 181–184 (1987).

    Google Scholar 

  • V. V. Zaikov, T. N. Shadlun, V. V. Maslennikov, and N. S. Bortnikov, “The Yaman-Kasy sulfide lode (South Urals)—remains of ancient “black smokers” on the floor of the Uralian paleoocean,” Geol. Rudn. Mestorozhd. 37(6), 511–529 (1995).

    Google Scholar 

  • A. N. Zavaritskii, V. A. Zavaritskii, T. N. Shaldun, V. P. Loginov, A. V. Pek, S. N. Ivanov, and L. G. Kvasha, Massive Sulfide Deposits of the Urals (Akad. Nauk SSSR, Moscow, 1950) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Rusakov.

Additional information

Original Russian Text © V.Yu. Rusakov, B.N. Ryzhenko, I.A. Roshchina, N.N. Kononkova, V.S. Karpukhina, 2015, published in Geokhimiya, 2015, No. 7, pp. 624–650.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusakov, V.Y., Ryzhenko, B.N., Roshchina, I.A. et al. Devonian ore clastic turbidites of the Molodezhnoe massive copper sulfide deposit, Southern Urals. Geochem. Int. 53, 624–647 (2015). https://doi.org/10.1134/S0016702915070095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915070095

Keywords

Navigation