Skip to main content
Log in

Sources of high-pressure fluids involved in the formation of hydrothermal deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Available fluid inclusion data on hydrothermal deposits, deep-seated xenoliths, magmatic and metamorphic rocks were used to generalize the determinations of physicochemical parameters (temperature, pressure, and compositions) of natural fluids. It was established that fluid pressures during formation of hydrothermal deposits often exceeded lithostatic loading (250–270 bar/km) of the overlying rocks. Fluids from deep-seated xenoliths, magmatic and metamorphic objects are considered as the possible sources of high-pressure fluids. Data on temperatures, pressures, and fluid composition are generalized for each object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Andersen, H. Austrheim, and E. A. J. Burke, “Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of W. Norway,” Mineral. Mag. 54, 145–158 (1990).

    Google Scholar 

  • T. Andersen, E. A. J. Burke, and H. Austrheim, “Nitrogenbearing, aqueous fluid inclusions in some eclogites from the Western Gneiss Region of the Norwegian Caledonides,” Contrib. Mineral. Petrol. 103, 153–165 (1989).

    Google Scholar 

  • T. Andersen, S. Y. O’Reilly, and W. L. Griffin, “The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism,” Contrib. Mineral. Petrol. 88, 72–85 (1984).

    Google Scholar 

  • T. Andersen, M. J. Whitehouse, and E. A. J. Burke, “Fluid inclusions in Scourian granulites from the Lewisian complex of NW Scotland: evidence for CO2-rich fluid in Late Archaean high-grade metamorphism,” Lithos 40, 93–104 (1997).

    Google Scholar 

  • I. A. Andreeva, V. B. Naumov, and V. I. Kovalenko, “Highpressure magmatic water in the carbonatite-bearing Mushugai-Khuduk Complex, Mongolia,” Dokl. Earth Sci. 351A(9), 1431–1436 (1996).

    Google Scholar 

  • R. G. Arnold, and M. J. Rutherford, “Data for brine and carbon dioxide filled liquid inclusions in quartz veins from the Coronation mine,” Geol. Surv. Canada, Pap., No. 5, 213–228 (1969).

    Google Scholar 

  • T. Baker, M. Bertelli, T. Blenkinsop, J. S. Cleverley, J. McLellan, M. Nugus, and D. Gillen, “P-T-X conditions of fluids in the Sunrise Dam gold deposit, Western Australia, and implications for the interplay between deformation and fluids,” Econ. Geol. 105, 873–894 (2010).

    Google Scholar 

  • I. A. Baksheev, V. Yu. Prokof’ev, and V. I. Ustinov, “Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, Central Urals: evidence from fluid inclusions and stable isotopes,” Geochem. Int. 39(Suppl. 2), S129–S144 (2001).

    Google Scholar 

  • S. P. Becker, A. Fall, R. J. Bodnar, “Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O-NaCl solutions (>30 wt % NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits,” Econ. Geol. 103, 539–554 (2008).

    Google Scholar 

  • N. V. Berdnikov and L. P. Korsakov, “Fluid inclusions and polymetamorphism of high-temperature granulites of the Larba Block, Stanovoy Fold System,” Tikhookean. Geol., No. 5, 90–94 (1983).

    Google Scholar 

  • N. V. Berdnikov and V. S. Prikhod’ko, “Hydrocarbonic degassing of alkali basalt magmas,” Dokl. Akad. Nauk SSSR 259, 708–710 (1981).

    Google Scholar 

  • N. V. Berdnikov and N. P. Romanovsky, “Granitoids of the Khungari and Upper Udoma groups of Sikhote Alin in the area of the Anyui Salient: inclusions in minerals, problems of genesis and ore potential,” Tikhookean Geol. 18, 86–93 (1999).

    Google Scholar 

  • N. V. Berdnikov, L. P. Karsakov, and A. M. Lennikov, “Geology and conditions of formation of the anorthosites of the Dzhugdzhur Massif on the basis of thermobarogeochemical data,” Tikhookean Geol., No. 5, 104–117 (1992).

    Google Scholar 

  • S. C. Bergman, and J. Dubessy, “CO2-CO fluid inclusions in a composite peridotite xenolith: implications for upper mantle oxygen fugacity,” Contrib. Mineral. Petrol. 85, 1–13 (1984).

    Google Scholar 

  • D. Bersani, E. Salvioli-Mariani, M. Mattioli, M. Menichetti, and P. P. Lottici, “Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America),” Spectrochim. Acta. Part A. 73, 443–449 (2009).

    Google Scholar 

  • J. S. Bettencourt, W. B. Leite, C. L. Goraieb, I. Sparrenberger, R. M. S. Bello, and B. L. Payolla, “Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics,” Lithos 80, 363–386 (2005).

    Google Scholar 

  • S. Bhattacharya and M. K. Panigrahi, “Heterogeneity in fluid characteristics in the Ramagiri-Penakacherla sector of the eastern Dharward Craton: implications to gold metallogeny,” Russ. Geol. Geophys. 52, 1436–1447 (2011).

    Google Scholar 

  • A. Bilal and J. Touret, “Fluid inclusions in phenocrysts from basaltic lavas of Puy Beaunit (French Massif Central),” Bull. Soc. Fr. Mineral. Cristallogr. 100, 324–328 (1977).

    Google Scholar 

  • A. Bilal and J. Touret, “Les inclusions fluides des enolaves catazonales de Bournac (Massif Central),” Bull. Soc. Franc. Mineral. Cristallogr. 99, 134–139 (1976).

    Google Scholar 

  • A. Bilal and J. L. R. Touret, “Mantle xenoliths in recent volcanism from Syrian rift,” Bull. Soc. Geol. France 172, 3–16 (2001).

    Google Scholar 

  • S. S. Binu-Lal, T. Sawaki, H. Wada, and M. Santosh, “Ore fluids associated with the Wynad gold mineralization, southern India: evidence from fluid inclusion microthermometry and gas analysis,” J. Asian Earth Sci. 22, 171–187 (2003).

    Google Scholar 

  • N. S. Bortnikov, “Geochemistry and origin of the oreforming fluids in hydrothermal-magmatic systems in tectonically active zones,” Geol. Ore Dep. 48(1), 1–26 (2006).

    Google Scholar 

  • N. S. Bortnikov, G. N. Gamyanin, O. V. Vikent’eva, V. Yu. Prokof’ev, and A. V. Prokop’ev, “The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold-quartz and epithermal stibnite ores,” Geol. Ore Dep. 52, 339–372 (2010).

    Google Scholar 

  • N. S. Bortnikov, V. Yu. Prokof’ev, and N. V. Razdolina, “Origin of the Charmitan gold-quartz deposit (Uzbekistan),” Geol. Ore Dep. 38, 208–226 (1996).

    Google Scholar 

  • P. Buchholz, T. Oberthur, V. Luders, and J. Wilkinson, “Multistage Au-As-Sb mineralization and crustalscale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: a combined geochemical, mineralogical, stable isotope, and fluid inclusion study,” Econ. Geol. 102, 347–378 (2007).

    Google Scholar 

  • V. P. Chupin, A. A. Tomilenko, and S. V. Chupin, “Origin of granulite complexes: data on melt and fluid inclusions in zircon and rock-forming minerals,” Geol. Geofiz., No. 12, 116–131 (1993).

    Google Scholar 

  • J. S. Cline and A. H. Hotstra “Ore-fluid evolution at the Getchell Carlin-type gold deposit Nevada, USA,” Eur. J. Mineral. 12, 195–212 (2000).

    Google Scholar 

  • M. L. Crawford, D. W. Kraus, and L. S. Hollister, “Petrologic and fluid inclusion study of calc-silicate rocks, Prince Rupert, British Columbia,” Amer. J. Sci. 279, 1135–1159 (1979).

    Google Scholar 

  • M. Cuney, Y. Coulibaly, and M. C. Boiron, “High-density early CO2 fluids in the ultrahigh-temperature granulites of Ihouhaouene (In Ouzzal, Algeria),” Lithos 96, 402–414 (2007).

    Google Scholar 

  • R. S. Darling, “Fluid inclusion and phase equilibrium studies at the Cannivan Gulch molybdenum deposit, Montana, USA: effect of CO2 on molybdenite-powellite stability,” Geochim. Cosmochim. Acta 58, 749–760 (1994).

    Google Scholar 

  • B. De Vivo, A. Lima, and V. Scribano, “CO2 fluid inclusions in ultramafic xenoliths from the Iblean Plateau, Sicily, Italy,” Mineral. Mag. 54(375), 183–194 (1990).

    Google Scholar 

  • C. Di Martino, M. L. Frezzotti, F. Lucchi, A. Peccerillo, C. A. Tranne, and L. W. Diamond “Magma storage and ascent at Lipari Island (Aeolian archipelago, Southern Italy) at 223-81 ka: the role of crustal processes and tectonic influence,” Bull. Volcanol. 72, 1061–1076 (2010).

    Google Scholar 

  • N. L. Dobretsov, I. V. Ashchepkov, V. A. Simonov, and S. M. Zhmodik, “Interaction of upper mantle rocks with deep fluids and melts in the Baikal rift zone,” Geol. Geofiz., No. 5, pp. 3–20 (1992).

    Google Scholar 

  • X. Duan, H. Sun, W. Yang, B. Su, Y. Xiao, Z. Hou, and H. Shi, “Melt-peridotite interaction in the shallow lithospheric mantle of the North China Craton: evidence from melt inclusions in the quartz-bearing orthopyroxene-rich websterite from Hannuoba,” Int. Geol. Rev. 56, 448–472 (2014).

    Google Scholar 

  • E. F. Duke, K. C. Galbreath, and K. J. Trusty, “Fluid inclusion and carbon isotope studies of quartz-graphite veins, Black Hills, South Dakota, and Ruby Range, Montana,” Geochim. Cosmochim. Acta 54, 683–698 (1990).

    Google Scholar 

  • A. M. Erokhin, “Physicochemical features of primary magmatic fluids in metalliferous granites at the Svetloe Sn-W Deposit,” Geochem. Int. 35(1), 95–97 (1997).

    Google Scholar 

  • I. E. Ertan, and W. P. Leeman,”Fluid inclusions in mantle and lower crustal xenoliths from the Simcoe volcanic field, Washington” Chem. Geol. 154, 83–95 (1999).

    Google Scholar 

  • A. M. Faleiros, G. A. C. Campanha, F. M. Faleiros, and R. M. Silveira Bello, “Fluid regimes, fault-valve behavior and formation of gold-quartz veins—the Morro do Ouro mine, Ribeira belt, Brazil,” Ore Geol. Rev. 56, 442–456 (2014).

    Google Scholar 

  • H. R. Fan, Y. H. Xie, and J. H. Yang, “Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China,” Mineral. Deposita 38, 739–750 (2003).

    Google Scholar 

  • M. L. Frezzotti, E. A. J. Burke, B. De Vivo, B. Stefanini, and I. M. Villa, “Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii),” Eur. J. Mineral. 4, 1137–1153 (1992).

    Google Scholar 

  • M. L. Frezzotti, B. De Vivo, and R. Clocchiatti, “Meltmineral-fluid interactions in ultramafic nodules from alkaline lavas of Mount Etna (Sicily, Italy): melt and fluid inclusion evidence,” J. Volcanol. Geotherm. Res. 47, 209–219 (1991).

    Google Scholar 

  • M. L. Frezzotti, S. Ferrando, A. Peccerillo, M. Petrelli, F. Tecce, and A. Perucchi “Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara (Lake Tana region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of continental flood basalts,” Geochim. Cosmochim. Acta 74, 3023–3039 (2010).

    Google Scholar 

  • N. A. Gibsher, A. A. Tomilenko, A. M. Sazonov, M. A. Ryabukha, and A. L. Timkina, “The Gerfed gold deposit: fluids and PT-conditions for quartz vein formation (Yenisei Ridge, Russia),” Russ. Geol. Geophys. 52, 1461–1473 (2011).

    Google Scholar 

  • A. V. Golovin and V. V. Sharygin, “Petrogenetic analysis of fluid and melt inclusions in minerals from mantle xenoliths from the Bele pipe basanites (North Minusa depression),” Russ. Geol. Geophys. 48, 811–824 (2007).

    Google Scholar 

  • N. A. Goryachev, O. V. Vikent’ev, N. S. Bortnikov, V. Yu. Prokof’ev, V. A. Alpatov, and V. V. Golub, “The world-class Natalka gold deposit, northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore,” Geol. Ore Dep. 50, 362–390 (2008).

    Google Scholar 

  • A. A. Gurenko, A. V. Sobolev, and N. N. Kononkova, “Primary melt of alkali olivine basalts of Iceland: composition and conditions of crystallization,” Dokl. Akad. Nauk SSSR, 313, 144–149 (1990).

    Google Scholar 

  • T. H. Hansteen, T. Andersen, E. R. Neumann, and H. Jelsma, “Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism,” Contrib. Mineral. Petrol. 107, 242–254 (1991).

    Google Scholar 

  • T. H. Hansteen, A. Klugel, and H.-U. Schmincke, “Multistage magma ascent beneath the Canary Islands: evidence from fluid inclusions,” Contrib. Mineral. Petrol. 132, 48–64 (1998).

    Google Scholar 

  • N. Hirano, J. Yamamoto, H. Kagi, and T. Ishii, “Young, olivine xenocryst-bearing alkali-basalt from the oceanward slope of the Japan Trench,” Contrib. Mineral. Petrol. 148, 47–54 (2004).

    Google Scholar 

  • I. Hossain, T. Tsunogae, and H. M. Rajesh, “Geothermobarometry and fluid inclusions of dioritic rocks in Bangladesh: Implications for emplacement depth and exhumation rate,” J. Asian Earth Sci. 34, 731–739 (2009).

    Google Scholar 

  • Z. Q. Hou, S. H. Tian, Y. L. Xie, Z. S. Yang, Z. X. Yuan, S. P. Yin, L. S. Yi, H. C. Fei, T. R. Zou, G. Bai, and X. Y. Li, “The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China,” Ore Geol. Rev. 36, 65–89 (2009).

    Google Scholar 

  • V. Hurai, W. Prochaska, O. Lexa, K. Schulmann, R. Thomas, and P. Ivan, “High-density nitrogen inclusions in barite from a giant siderite vein: implications for Alpine evolution of the Variscan basement of Western Carpathians, Slovakia,” J. Metamorph. Geol. 26, 487–498 (2008).

    Google Scholar 

  • M. Huraiova, P. Konecny, V. Konecny, K. Simon, and V. Hurai, “Mafic and salic igneous xenoliths in Late Tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep-crustal magmatic reservoir in the Western Carpathians,” Eur. J. Mineral. 8, 901–916 (1996).

    Google Scholar 

  • M. S. Ibrahim and T. K. Kyser, “Fluid inclusion and isotope systematics of the high-temperature Proterozoic Star Lake lode gold deposit, Northern Saskatchewan, Canada,” Econ. Geol. 86, 1468–1490 (1991).

    Google Scholar 

  • S. H. Jiang, F. J. Nie, P. Hu, X. R. Lai, and Y. F. Liu, “Mayum: an orogenic gold deposit in Tibet, China,”. Ore Geol. Rev. 36, 160–173 (2009).

    Google Scholar 

  • V. S. Karpukhina, V. B. Naumov, and A. N. Salazkin, “Melt and high-density fluid inclusions of magmatic water in phenocrysts of quartz from acidic volcanic rocks of the Verkhneural’sk Ore District, South Urals,” Dokl. Earth Sci. 426(4), 580–583 (2009).

    Google Scholar 

  • K. B. Kepezhinskas and A. A. Tomilenko, “Dynamics of compositional variations of fluid during metamorphism of the rocks of ophiolite zones by the example of the East Hubsugul region,” Dokl. Akad. Nauk SSSR 285, 963–966 (1985).

    Google Scholar 

  • K. B. Kepezhinskas, A. A. Tomilenko, N. A. Prusevich, and L. N. Fomina, “Composition of fluid inclusions in quartz from the Precambrian-Lower Cambrian metamorphic associations of the Eastern Khubsugul Region, Mongolia,” Zap. Vsesoyuz. Min. O-va 114, 569–575 (1985).

    Google Scholar 

  • E. L. Klein, J. W. A. Ribeiro, C. Harris, C. A. V. Moura, and A. Giret, “Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi Belt, Brazil,” Econ. Geol. 103, 957–980 (2008).

    Google Scholar 

  • R. Klemd, T. Oberthur, and A. Ouedraogo, “Gold-telluride mineralisation in the Birimian at Diabatou, Burkina Faso: the role of CO2-N2 fluids,” J. Afr. Earth Sci. 24, 227–239 (1997).

    Google Scholar 

  • P. V. Klevtsov and G. G. Lemmlein, “Determination of the minimum pressure of quartz formation by the example of crystals from the Pamirs,” Zap. Vsesoyuz. Mineral. O-va 88, 661–666 (1959).

    Google Scholar 

  • A. Klugel, T. H. Hansteen, and K. Galipp, “Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands),” Earth Planet. Sci. Lett. 236, 211–226 (2005).

    Google Scholar 

  • M. Konecna, “Fluidne inkluzie a termodynamicke podmienky vzniku xenolitov spinelovych lherzolitov v alkalickych bazaltoch juzneho Slovenska,” Mineral. Slovaca 22, 555–564 (1990).

    Google Scholar 

  • J. Konnerup-Madsen, “Fluid inclusions in quartz from deepseated granitic intrusions, south Norway,” Lithos 12, 13–23 (1979).

    Google Scholar 

  • A. A. Kostyrko and V. B. Naumov, “Study of fluid inclusions in the minerals from the rocks of the Kola Group,” Geokhimiya, No. 12, 1795–1799 (1985).

    Google Scholar 

  • V. I. Kovalenko, I. P. Solovova, V. B. Naumov, I. D. Ryabchikov, D. A. Ionov, and A. I. Tsepin, “Mantle mineral formation with participation of hydrocarbonic-sulfide-silicate fluid,” Geokhimiya, No. 3, 289–303 (1986).

    Google Scholar 

  • I. P. Kushnarev, Depths of the Formation of Endogenic Ore Deposits (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  • W. M. Lamb, J. W. Valley, and P. E. Brown, “Post-metamorphic CO2-rich fluid inclusions in granulites,” Contrib. Mineral. Petrol. 96, 485–495 (1987).

    Google Scholar 

  • D. M. Lawrence, P. J. Treloqr, A. H. Rankin, A. Boyce, and P. Harbidge, “A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: implications for multifluid sources in the generation of orogenic gold deposits,” Econ. Geol. 108, 229–257 (2013).

    Google Scholar 

  • D. L. Leach, E. Marsh, P. Emsbo, C. S. Rombach, K. D. Kelley, and M. Anthony, “Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska,” Econ. Geol. 99, 1449–1480 (2004).

    Google Scholar 

  • P. Lecumberri-Sanchez, M. Steele-MacInnis, and R. J. Bodnar “A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance,” Geochim. Cosmochim. Acta 92, 14–22 (2012).

    Google Scholar 

  • J. Q. Liu, L. H. Chen, and P. Ni, “Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions,” Chinese Sci. Bull. 55, 1067–1076 (2010).

    Google Scholar 

  • C. Miller, and W. Richter, “Solid and fluid phases in lherzolite and pyroxenite inclusions from the Hoggar, central Sahara,” Geochem. J. 16, 263–277 (1982).

    Google Scholar 

  • O. F. Mironova, “Volatile components of natural fluids: evidence from inclusions in minerals: methods and results,” Geochem. Int. 48, 83–90 (2010).

    Google Scholar 

  • B. W. Murck, R. C. Burruss, and L. S. Hollister, “Phase equilibria in fluid inclusions in ultramafic xenoliths,” Am. Mineral. 63, 40–46 (1978).

    Google Scholar 

  • J. Nanda, M. K. Panigrahi, and S. Gupta, “Fluid inclusion studies on the Koraput Alkaline Complex, Eastern Ghats Province, India: implications for mid-Neoproterozoic granulite facies metamorphism and exhumation,” J. Asian Sci. 82, 10–20 (2014).

    Google Scholar 

  • G. B. Naumov and V. B. Naumov, “Effect of temperature and pressure on acidity of endogenic solutions and staged ore formation,” Geol. Ore Dep., No. 1, 13–23 (1977).

    Google Scholar 

  • V. B. Naumov, “Opportunities of determination of pressure and density of mineral-forming environments from inclusions in minerals,” in Use of Thermobarogeochemical Methods in Search and Study of Ore Deposits (Nedra, Moscow, 1982), pp. 85–94 [in Russian].

    Google Scholar 

  • V. B. Naumov and G. F. Ivanova, “Geochemical criteria of genetic relation of the mineralization with felsic magmatism,” Geokhimiya, No. 6, 791–804 (1984).

    Google Scholar 

  • V. B. Naumov and G. F. Ivanova, “Relation of rare-metal mineralization with felsic magmatism: evidence from inclusions in minerals,” Geol. Rudn. Mestorozhd., No 3, 95–103 (1980).

    Google Scholar 

  • V. B. Naumov and V. I. Kovalenko, “Characteristics of volatiles in natural magmas and metamorphic fluids: evidence from inclusions in minerals,” Geokhimiya, No. 5, 590–600 (1986).

    Google Scholar 

  • V. B. Naumov and G. B. Naumov, “Mineral-forming fluids and physicochemical tendencies in their evolution,” Geokhimiya, No. 10, 1450–1460 (1980).

    Google Scholar 

  • V. B. Naumov and A. I. Polyakov, “Thermobarometric studies of mineral inclusions in the volcanic rocks from the West Rift Zone of Africa,” Geokhimiya, No. 4, 379–386 (1971).

    Google Scholar 

  • V. B. Naumov and A. I. Polyakov, “Thermometric study of mineral inclusions in the basalt-rhyolite rocks of the Iceland rift zone,” Geokhimiya, No. 5, 701–707 (1974).

    Google Scholar 

  • V. B. Naumov and A. L. Sokolov, “Genetic relations of granites and tin-bearing veins of the Industrial’noe deposit: evidence from inclusions in minerals,” Geol. Rudn. Mestorozhd., No. 4, 74–80 (1981).

    Google Scholar 

  • V. B. Naumov and N. E. Uchameishvili, “Thermometric study of inclusions in mineral from magmatic rocks of the Tyrnyauz District, North Caucasus,” Geokhimiya, No. 4, 525–532 (1977).

    Google Scholar 

  • V. B. Naumov, A. D. Babansky, A. M. Erokhin, and V. V. Shapenko, “New opportunities in technique of study of melt and fluid inclusions in granite minerals,” Geokhimiya, No. 6, 893–898 (1992).

    Google Scholar 

  • V. B. Naumov, V. A. Dorofeev, and O. F. Mironova, “Principal physicochemical parameters of natural mineralforming fluids,” Geochem. Int. 47(8), 777–802 (2009).

    Google Scholar 

  • V. B. Naumov, V. A. Kovalenker, I. K. Myznikov, A. N. Salazkin, O. F. Mironova, and N. I. Savel’eva, “High-pressure fluids of hydrothermal veins of the Ryabinovsky alkaline massif, Central Aldan,” Dokl. Ross. Akad. Nauk 343, 99–102 (1995).

    Google Scholar 

  • V. B. Naumov, V. A. Kovalenker, V. L. Rusinov, and N. N. Kononkova, “High-density fluid inclusions of magmatic water in phenocrysts from felsic volcanics of Western Carpathians and Middle Tien Shan,” Petrologiya 2, 480–494 (1994).

    Google Scholar 

  • V. B. Naumov, V. I. Kovalenko, and B. A. Dorofeeva, “Magmatic volatile components and their role in the formation of ore-forming fluids,” Geol. Ore Dep. 39(6), 451–460 (1997).

    Google Scholar 

  • V. B. Naumov, V. I. Kovalenko, and O. N. Kosukhin, “Parameters of crystallization of ongonite magmas: evidence from melt inclusion study,” Dokl. Akad. Nauk SSSR 267, 435–437 (1982).

    Google Scholar 

  • V. B. Naumov, A. I. Polyakov, and B. P. Romanchev, “Conditions of crystallization of volcanic rocks of the East Africa rift zones: evidence from thermobarometric studies,” Geokhimiya, No. 6, 663–668 (1972).

    Google Scholar 

  • V. B. Naumov, M. V. Portnyagin, M. L. Tolstykh, and V. V. Yarmolyuk, “Chemical composition and crystallization conditions of trachybasalts from the Dzhida Field, Southern Baikal Volcanic Area: evidence from melt and fluid inclusions,” Geochem. Int. 44(3), 286–295 (2006).

    Google Scholar 

  • V. B. Naumov, Yu. G. Safonov, and O. F. Mironova, “Some regularities in spatial variations of the parameters of fluid of the Kolar gold deposit, India,” Geol. Rudn. Mestorozhd., No. 6, 105–109 (1988).

    Google Scholar 

  • V. B. Naumov, I. P. Solovova, V. I. Kovalenko, and I. D. Ryabchikov, “Composition and concentration of fluid phase and water content in the pantellerite and ongonite melts: evidence from inclusions in minerals,” Dokl. Akad. Nauk SSSR 295, 456–459 (1987).

    Google Scholar 

  • V. B. Naumov, M. L. Tolstykh, V. A. Kovalenker, and N. N. Kononkova, “Fluid overpressure in andesite melts from Central Slovakia: evidence from inclusions in minerals,” Petrology 4, 265–276 (1996).

    Google Scholar 

  • Z. Y. Ni, N. Li, S. J. Guan, H. Zhang, and L. W. Xue, “Characteristics of fluid inclusions and ore genesis of the Dahu Au-Mo deposit in the Xiaoqinling gold field, Henan Province,” Acta Petrol. Sinica 24, 2058–2068 (2008).

    Google Scholar 

  • H. S. Pandalai, G. N. Jadhav, B. Mathew, V. Panchapakesan, K. K. Raju, and M. L. Patil, “Dissolution channels in quartz and the role of pressure changes in gold and sulfide deposition in the Archean, greenstone-hosted, Hutti gold deposit, Karnataka, India,” Mineral. Deposita 38, 597–624 (2003).

    Google Scholar 

  • A. Pecher, “Les inclusions fluides des quartz d’exsudation de la zone du M.C.T. himalayen au Nepal central: donnees sur la phase fluid dans une grande zone de cisaillement,” Bull. Mineral. 102, 537–554 (1979).

    Google Scholar 

  • M. Poutiainen and S. Partamies, “Fluid inclusion characteristics of auriferous quartz veins in Archean and Paleoproterozoic greenstone belts of eastern and southern Finland,” Econ. Geol. 98, 1355–1369 (2003).

    Google Scholar 

  • V. Yu. Prokof’ef and E. I. Vorob’ev, “P-T conditions of formation of strontium-barium carbonatites, charoite rocks and torgolites of the Murun alkaline massif, East Siberia,” Geokhimiya, No. 10, 1444–1452 (1991).

    Google Scholar 

  • V. Yu Prokof’ev, A. M. Spiridonov, T. M. Kuzmina, V. A. Gnilusha, and V. F. Kovaleva, “Physicochemical conditions of mineralizing processes at the Kariiskoe gold deposit, eastern Transbaikalia,” Geochem. Int. 35(4), 368–378 (1997).

    Google Scholar 

  • V. Yu, Prokof’ev, V. A. Kovalenker, and S. Elen, “Evolution of fluids of the Stiavnica epithermal ore magmatic system in Central Slovakia,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 9, 137–143 (1992).

    Google Scholar 

  • F. G. Reif, “Conditions and mechanism of initiation of orebearing solutions at the tungsten deposits of the Transbaikalia,” Geokhimiya, No. 11, 1675–1684 (1980).

    Google Scholar 

  • S. M. Rodionov, V. V. Shapenko, and L. N. Rodionova, “Structures of localization and genesis of tin-tungsten deposits of Central Sikhote Alin,” Geol. Rudn. Mestorozhd., No. 1, 22–30 (1984).

    Google Scholar 

  • E. Roedder, “Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine,” Earth Planet. Sci. Lett. 66, 369–379 (1983).

    Google Scholar 

  • E. Roedder, “Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts,” Am. Mineral. 50, 1746–1782 (1965).

    Google Scholar 

  • R. L. Rudnick, L. D. Ashwal, and D. J. Henry, “Fluid inclusions in highgrade gneisses of the Kapuskasing structural zone, Ontario: metamorphic fluids and uplit/erosion path,” Contrib. Mineral. Petrol. 87, 399–406 (1984).

    Google Scholar 

  • B. G. Rusk, M. H. Reed, J. H. Dilles, L. M. Klemm, and C. A. Heinrich, “Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT,” Chem. Geol. 210, 173–199 (2004).

    Google Scholar 

  • H. K. Sachan, B. K. Mukherjee, and R. J. Bodnar, “Preservation of methane generated during serpentinization of upper mantle rocks: evidence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India),” Earth Planet. Sci. Lett. 257, 47–59 (2007).

    Google Scholar 

  • M. Santosh, “Fluid evolution characteristics and piezothermic array of south Indian charnockites,” Geology 13, 361–363 (1985).

    Google Scholar 

  • M. Santosh, M. Tagawa, S. Taguchi, and S. Yoshikura, “The Nagercoil Granulite Block, southern India: petrology, fluid inclusions and exhumation history,” J. Asian Earth Sci. 22, 131–155 (2003).

    Google Scholar 

  • M. Santosh, K. Tanaka, and Y. Yoshimura, “Carbonic fluid inclusions in ultrahigh-temperature granitoids from southern India,” Compt. Rend. Geosci. 337, 327–335 (2005).

    Google Scholar 

  • M. Santosh, T. Tsunogae, and S. Yoshikura, ““Ultrahigh density” carbonic fluids in ultrahigh-temperature crustal metamorphism,” J. Mineral. Petrol. Sci. 99, 164–179 (2004).

    Google Scholar 

  • M. Santosh, T. Tsunogae, H. Ohyama, K. Sato, J. H. Li, and S. J. Liu, “Carbonic metamorphism at ultrahightemperatures: evidence from North China Craton,” Earth Planet. Sci. Lett. 266, 149–165 (2008).

    Google Scholar 

  • M. Santosh, T. Tsunogae, H. Shimizu, and J. Dubessy, “Fluid characteristics of retrogressed eclogites and mafic granulites from the Cambrian Gondwana suture zone in southern India,” Contrib. Mineral. Petrol. 159, 349–369 (2010).

    Google Scholar 

  • P. Schiano and R. Clocchiatti, “Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals,” Nature 368, 621–624 (1994).

    Google Scholar 

  • P. Schiano, B. Bourdon, R. Clocchiatti, D. Massare, M. E. Varela, and Y. Bottinga, “Low-degree partial melting trends recorded in upper mantle minerals,” Earth Planet. Sci. Lett. 160, 537–550 (1998).

    Google Scholar 

  • R. G. Schwab and B. Freisleben, “Fluid CO2 inclusions in olivine and pyroxene and their behaviour under high pressure and temperature conditions,” Bull. Mineral. 111, 297–306 (1988).

    Google Scholar 

  • S. Schwarz, A. Klugel, and C. Wohlgemuth-Ueberwasser, “Melt extraction pathways and stagnation depths beneath the Madeira and Desertas rift zones (NE Atlantic) inferred from barometric studies,” Contrib. Mineral. Petrol. 147, 228–240 (2004).

    Google Scholar 

  • I. S. Sedova, “Thermodynamic conditions of the formation of some metamorphic rocks: evidence from study of inclusions of mineral-forming environment,” in Thermodynamic Conditions of Metamorphism (Nauka, Leningrad, 1976), p. 182–191 (1976).

    Google Scholar 

  • V. S. Shatsky, V. S. Sobolev, and A. A. Tomilenko, “Fluid inclusions in eclogites and host rocks,” in Thermobarogeochemical Studies of Mineral Formation (Nauka, Novosibirsk, 1988), p. 11–15.

    Google Scholar 

  • M. I. Shvadus, Petrology of the Parental Granitoids of Fluorine-Rare-Metal Deposits of Western Transbaikalia (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  • R. H. Sillitoe, “The tops and bottoms of porphyry copper deposits,” Econ. Geol. 68, 799–815 (1973).

    Google Scholar 

  • M. P. Smith, P. Henderson, and L. S. Campbell “Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China,” Geochim. Cosmochim. Acta 64, 3141–3160 (2000).

    Google Scholar 

  • C. S. So and K. L. Shelton, “A sulfur isotopic and fluid inclusion study of the Cu-W-bearing tourmaline breccia pipe, Ilkwang mine, Republic of Korea,” Econ. Geol. 78, 325–332 (1983).

    Google Scholar 

  • N. V. Sobolev, A. A. Tomilenko, and V. S. Shatsky, “Conditions of metamorphism of the Zerenda Group rocks of the Kokchetav Massif: evidence from fluid inclusion study,” Russ. Geol. Geofiz., No. 4, 55–58(1985).

    Google Scholar 

  • I. P. Solovova, V. B. Naumov, V. I. Kovalenko, A. V. Girnis, and A. V. Guzhova, “Evolution of the spinel lherzolite (Dreiser Weiher, Germany): evidence from microinclusion study,” Geokhimiya, No. 10, 1400–1411 (1990).

    Google Scholar 

  • R. L. Somani and P. K. Srivastava, “CO2-rich fluid inclusions in granulites from Bandanwara area, Rajasthan,” Curr. Sci. 70, 1003–1007 (1996).

    Google Scholar 

  • E. M. Spiridonov and V. Yu. Prokof’ev, “Geochemical features and conditions of formation of plutonogenic gold-telluride concentrations in the Caledonides of Northern Kazakhstan,” Geol. Rudn. Mestorozhd., No. 6, 26–39 (1989).

    Google Scholar 

  • X. M. Sun, Y. Zhang, D. X. Xiong, W. D. Sun, G. Y. Shi, W. Zhai, and S. W. Wang, “Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China,” Ore Geol. Rev. 36, 235–249 (2009).

    Google Scholar 

  • Cs. Szabo and R. J. Bodnar, “Changing magma ascent rates in the Nograd-Gomor volcanic field Northern Hungary/Southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths,” Petrology 4, 240–249 (1996).

    Google Scholar 

  • R. Thomas, “Thermometric study on granites from Bornholm island, Denmark,” Z. Geol. Wiss. 22, 139–145 (1994).

    Google Scholar 

  • A. V. Titov, G. Yu. Shvedenkov, and S. A. Vystavnoi, “Parameters of crystallization and evolution of the raremetal granite magma in southern Altai, based on the study of inclusions in minerals,” Dokl. Earth Sci. 369(8), 1132–1136 (1999).

    Google Scholar 

  • A. A. Tomilenko and V. P. Chupin, Thermobarogeochemistry of Metamorphic Complexes (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  • A. A. Tomilenko and Yu. A. Dolgov, “Conditions of formation of “granulated” quartz of the Borus Range, western Sayan,” Dokl. Akad. Nauk SSSR 242, 1173–1176 (1978).

    Google Scholar 

  • A. A. Tomilenko, V. P. Chupin, and Yu. A. Dolgov, “Conditions of formation of metamorphic rocks based on inclusion study,” in Genetic Studies in Mineralogy (Nauka, Novosibirsk, 1976), p. 138–141.

    Google Scholar 

  • K. Torok, “Multiple fluid migration events in the Sopron gneisses during the Alpine high-pressure metamorphism, as recorded by bulk-rock and mineral chemistry and fluid inclusions,” Neue. Jahb. Mineral. Abh. 177, 1–36 (2001).

    Google Scholar 

  • K. Torok, B. Nemeth, F. Koller, J. Degi, E. Badenszki, C. Szabo, and A. Mogessie, “Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study,” Mineral. Petrol. 108, 33–47 (2014).

    Google Scholar 

  • G. M. Tsareva, V. B. Naumov, V. I. Kovalenko, A. I. Tsepin, and A. D. Babansky, “Composition and parameters of crystallization of topaz rhyolites of the Spor-Mountain Formation (United States),” Geokhimiya, No. 10, 1453–1462 (1991).

    Google Scholar 

  • A. I. Tugarinov and V. B. Naumov, “PT conditions of the formation of hydrothermal uranium deposits,” Geokhimiya, No. 2, 131–146 (1969).

    Google Scholar 

  • M. Urban, R. Thomas, V. Hurai, P. Konecny, and M. Chovan, “Superdense CO2 inclusions in Cretaceous quartzstibnite veins hosted in low-grade Variscan basement of the Western Carpathians, Slovakia,” Mineral. Deposita 40, 867–873 (2006).

    Google Scholar 

  • Y. Vapnik, “Melt and fluid inclusions and mineral thermobarometry of mantle xenoliths in Makhtesh Ramon, Israel,” Isr. J. Earth Sci. 54, 15–28 (2005).

    Google Scholar 

  • Y. Vapnik, V. V. Sharygin, V. Samoilov, and Z. Yudalevich, “The petrogenesis of basic and ultrabasic alkaline rocks of western Makhtesh Ramon, Israel: geochemistry, melt and fluid inclusion study,” Int. J. Earth Sci. 96, 663–684 (2007).

    Google Scholar 

  • M. E. Varela, E. Bjerg, R. Clocchiatti, C. H. Labudia, and G. Kurat, “Fluid inclusions in upper mantle xenoliths from Northern Patagonia, Argentina: evidence for an upper mantle diapir,” Mineral. Petrol. 60, 145–164 (1997).

    Google Scholar 

  • C. Viti and M. L. Frezzotti, “Re-equilibration of glass and CO2 inclusions in xenolith olivine: a TEM study,” Am. Mineral. 85, 1390–1396 (2000).

    Google Scholar 

  • B. Vivo De, M. L. Frezzotti, A. Lima, and R. Trigila, “Spinel lherzolite nodules from Oahu island (Hawaii): a fluid inclusion study,” Bull. Mineral. 111, 307–319 (1988).

    Google Scholar 

  • A. V. Volkov, V. N. Egorov, V. Yu. Prokof’ev, A. A. Sidorov, N. A. Goryachev, and A. V. Biryukov, “Gold deposits in dikes of the Yana-Kolyma Belt,” Geol. Ore Dep. 50, 275–298 (2008).

    Google Scholar 

  • A. V. Volkov, V. Yu. Prokof’ev, V. Yu. Alekseev, I. A. Baksheev, and A. A. Sidorov, “Ore-forming fluids and conditions of formation of gold-sulfide-quartz mineralization in the shear zone: Pogromnoe Deposit (eastern Transbaikalian region),” Dokl. Earth Sci, 441(1), 1492–1497 (2011a).

    Google Scholar 

  • A. V. Volkov, N. E. Savva, A. A. Sidorov, V. Yu. Prokof’ev, N. A. Goryachev, S. D. Voznesensky, A. V. Alshevsky, and A. D. Chernova, “Shkol’noe gold deposit, the Russian Northeast,” Geol. Ore Dep. 53, 1–27 (2011b).

    Google Scholar 

  • P. Vrolijk, G. Myers, and J. C. Moore, “Warm fluid migration along tectonic melanges in the Kodiak accretionary complex, Alaska,” J. Geophys. Res. 93(B 9), 10313–10324 (1988).

    Google Scholar 

  • L. B. Vry and P. E. Brown, “Texturally-early fluid inclusions in garnets: evidence of the prograde metamorphic path,” Contrib. Mineral. Petrol. 108, 271–282 (1991).

    Google Scholar 

  • Lin-Qi Xia, D. Massare, and R. Clocchiatti, “Thermobarochimie de quelques nodules de peridotite contenus dans les basaltes alcalins neogenes de Chine orientale,” C. R. Acad. Sci. 297, 675–680 (1983).

    Google Scholar 

  • N. Xiang, Y. F. Yang, Y. S. Wu, and K. F. Zhou, “Fluid inclusion study of the Baishan porphyry Mo deposit in the eastern Tianshan ore field, Xinjiang Province,” Acta Petrol. Sinica 29, 146–158 (2013).

    Google Scholar 

  • Y. Xiao, J. Hoefs, A. M. Kerkhof van den, J. Fiebig, and Y. Zheng, “Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling,” Contrib. Mineral. Petrol. 139, 1–16 (2000).

    Google Scholar 

  • J. Yamamoto, H. Kagi, Y. Kawakami, N. Hirano, and M. Nakamura, “Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantleand crust-derived rocks,” Earth Planet. Sci. Lett. 253, 369–377 (2007).

    Google Scholar 

  • Y. Yao, G. Morteani, and R. B. Trumbull, “Fluid inclusion microthermometry and the P-T evolution of goldbearing hydrothermal fluids in the Niuxinshan gold deposit, eastern Hebei province, NE China,” Mineral. Deposita 34, 348–365 (1999).

    Google Scholar 

  • B. C. Yoo, P. E. Brown, and N. C. White, “Hydrothermal fluid characteristics and genesis of Cu quartz veins in the Hwanggangri metallogenic district, Republic of Korea: mineralogy, fluid inclusion and stable isotope studies,” J. Geochem. Explor. 110, 245–259 (2011).

    Google Scholar 

  • S. W. Yue, Y. Y. Zhai, X. H. Deng, J. T. Yu, and L. Yang, “Fluid inclusion and H-O isotope geochemistry and ore genesis of the Yindonggou deposit, Zhushan County, Hubei, China,” Acta Petrol. Sinica 29, 27–45 (2013).

    Google Scholar 

  • V. Zanon, M. L. Frezzotti, and A. Peccerillo, “Magmatic feeding system and crustal magma accumulation beneath Vulcano Island (Italy): evidence from CO2 fluid inclusions in quartz xenoliths,” J. fluid inclusions in quartz xenoliths,” J. Geophys. Res. 108(B6), 2298–2311 (2003).

    Google Scholar 

  • L. Zhang, H. Y. Chen, Y. J. Chen, Y. J. Qin, C. F. Liu, Y. Zheng, and N. H. Jansen, “Geology and fluid evolution of the Wangfeng orogenic-type gold deposit, Western Tian Shan, China,” Ore Geol. Rev. 49, 85–95 (2012).

    Google Scholar 

  • L. Zhang, C. F. Liu, and G. Wu, “The fluid inclusion geochemistry and mineragenetic type of the Wangfeng gold deposit, Xinjiang, China,” Acta Petrol. Sinica 25, 1465–1473 (2009).

    Google Scholar 

  • L. Zhang, Y. Zheng, and Y. J. Chen, “Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: a case study of orogenic-type Pb-Zn system,” J. Asian Earth Sci. 49, 69–79 (2012).

    Google Scholar 

  • Z. Zhang, K. Shen, M. Santosh, and X. Dong, “High density carbonic fluids in a slab window: Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet,” J. Asian Earth Sci. 42, 515–524 (2011).

    Google Scholar 

  • Z. J. Zhou, Y. J. Chen, S. Y. Jiang, H. X. Zhao, Y. Qin, and C. J. Hu, “Geology, geochemistry and ore genesis of the Wenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China Craton,” Ore Geol. Rev. 59, 1–20 (2014).

    Google Scholar 

  • O. -E. Zorigtkhuu, T. Tsunogae, and B. Dash, “Carbonic fluid inclusions in amphibolite-facies pelitic schists from Bodonch area, western Mongolian Altai,” J. Mineral. Petrol. Sci. 107, 44–49 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Naumov.

Additional information

Original Russian Text © V.B. Naumov, V.A. Dorofeeva, O.F. Mironova, V.Yu. Prokof’ev, 2015, published in Geokhimiya, 2015, No. 7, pp. 589–606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Dorofeeva, V.A., Mironova, O.F. et al. Sources of high-pressure fluids involved in the formation of hydrothermal deposits. Geochem. Int. 53, 590–606 (2015). https://doi.org/10.1134/S001670291507006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291507006X

Keywords

Navigation